
Communication Abstractions in Concurrent Processing
Waldemar Horwat
waldemar@acm.org

Abstract

Parallel and distributed programs are entering the mainstream—a 1024-processor Connection Machine is now
the fastest computer in the world, while at other places users are routinely running distributed programs on
networks of workstations. One of the most important aspects of parallel programming is the abstraction of the
communication channels between processors as presented to the programmer—how does one implement
communication among processes in a program in such a way that is very efficient both when the processes are
on the same node and when they are on remote nodes?

This paper presents and compares several approaches of viewing communication, including cache-coherent
shared memory, message passing, and higher-level protocols. The important hardware constraints will be
examined, and some predictions for the future will be presented. A number of literature references are
provided.

1. Introduction

Issue
As the densities of integrated circuits increase over
time, parallel and distributed processing are
becoming more important and widespread.
Unfortunately, unlike in sequential computing, there
is a lack of consensus on the mechanisms needed for
parallel and distributed computer systems. In
particular, communication primitives differ widely
among parallel architectures and operating systems.
Some parallel programs communicate by sharing
data in memory, others by sending messages such
as AppleEvents, and still others by higher-level
operating system calls.
Why should Macintosh developers concern
themselves with parallel programming, and,
specifically, communication in parallel programming?
There are a couple of reasons: First, networks are
becoming very widespread and offer a great resource
for running large or multi-user applications. Second,
the densities of integrated circuits continue to
increase geometrically [25], and by the turn of the
century will permit densities of 100 million transistors
on a chip (by comparison, a 68040 has slightly over
one million transistors). Increasing cache sizes and
sizes and numbers of logic units in processors will
shortly reach the point of diminishing returns, forcing
architects to put multiple processors onto a single
chip in order to significantly improve performance for
the coming generation of computer applications. The
goal of this paper is to explore communication
paradigms that let programs run efficiently on a wide

range of parallel architectures, from fast sequential
processors to tightly-coupled parallel systems to
distributed systems.

Outline
This paper examines and contrasts three
communication paradigms: cache-coherent shared-
memory, message passing, and high-level distributed
system communication services. Even lower and
higher-level abstractions such as electronic mail
handling exist, but they will not be discussed here.
One of the predictions made here is that as
technology advances, the shared memory and
message passing paradigms are going to merge into
what could be a universal localized communication
paradigm. However, at this point it’s not clear
whether distributed communication services can be
neatly integrated with the other two.
The three communication paradigms are discussed
individually in Sections 2, 3, and 4. Section 5
compares them and describes the coming unification
of shared memory and message passing.

Copyright © 1993 Waldemar Horwat

2. Shared-Memory
Architectures

P0 P1 P2 P3
Processors

Common Bus

Main
Memory

Figure 1. Shared-Memory Architecture

A shared-memory architecture appears to the
programmer as several processors sharing a
common pool of memory as in Figure 1. Each
processor can read and write words of memory; a
word of memory typically appears at the same
address for each processor.

Caching
The architecture in Figure 1 suffers from the absence
of caching. A few architectures without caching have
been proposed; Horizon [33] is an interesting
example in that it demonstrates how task switching
can be used to hide the latencies of memory
operations to the extent that the processors can keep
themselves busy without caches—each processor
can work on 1024 tasks at the same time! The bus
has been replaced by a three-dimensional mesh
network which has the throughput to handle all of
the memory requests. Nevertheless, this
architecture is not resource-efficient, as it has N3

memories and only N2 processors, for N=16.
The vast majority of architectures under
consideration today make use of local caches
attached to processors as in Figure 2 (Some
architectures are composed entirely of caches [24]
[32]). The data in these caches has to be kept
coherent in some manner so a processor will not read
old data from its cache after another processor has
modified the data. Note that a shared-memory
architecture does not have to be implemented in
hardware according to the block diagram in Figure 1;
in fact, some of the architectures discussed below
have different topologies, don’t use buses at all, or
communicate by message passing.
Two important aspects of shared-memory systems
are support for synchronization and the ordering

semantics. Synchronization in its simplest form can
be achieved using indivisible test-and-set operations;
other variants exist which are fundamentally more
powerful. The simplest shared-memory systems
have strong consistency ordering semantics, which
means that there exists the concept of a global time
such that processors read and write words one at a
time, and events are perceived in the same order by
all processors. Other consistency semantics exist
with weaker assumptions somewhat reminiscent of
Einstein’s special relativity; one of these will be
discussed later in this section.

Bus-Based Shared-Memory
Architectures

P0 P1 P2 P3
Processors

Common Bus

Main
Memory

Cache Cache Cache Cache

Figure 2. Shared-Memory with Caches
The processors communicate only with their caches, which
then communicate with the main memory and other caches
through a common bus.

If one were to connect several processors directly to
main memory as in Figure 1, the performance would
not be much better than having one processor
because the memory bus would saturate. Putting
caches between processors and the memory requires
a protocol to ensure that stale data does not remain
in caches. Goodman’s protocol [20] utilizing snoopy
caches is one of the simplest and most popular such
protocols. Versions of this protocol are hardwired in
many modern microprocessors for building small
concurrent systems. The PowerPC 601 implements
MESI, a slight variant of this protocol [10].

Goodman’s Protocol
In Goodman’s protocol, processors operate on cache
lines (typically 16-128 bytes on today’s
architectures). Every main memory access either
reads or writes a cache line; if a processor wants to
write a single word, it has to read the entire line into
the local cache, alter the word, and later write the
line back to main memory. Each processor’s local
cache line can be in one of four states with respect to
a particular memory address a:
• Invalid (I): There is no valid data cached here
or the cached data corresponds to an address other
than a.
• Shared (S): Data from address a is cached here
and the cached data corresponds to main memory
contents.
• Exclusive (X): Data from address a is cached
here, the cached data corresponds to main memory
contents, and no other processor can have a cached
copy of this line.
• Dirty (D): Data from address a is cached here,
the cached data has been modified, and the change
has not been transmitted to main memory yet.
Each local cache’s actions on a read, write, and line
flush are as follows:
• Local processor reads line: If the line is
shared, exclusive, or dirty, provide the data locally. If
the line is invalid, request the line from main
memory. At this point either the main memory will
provide the data or another processor’s cache will
notice that it has a dirty copy of the line, in which
case the latter processor will provide the data both to
the main memory and to the original processor. This
is called a snooping operation because when one
cache requests a main memory line, all the others
snoop the bus to check whether they have a dirty
copy of that line.
• Local processor writes line: If the line is dirty,
the write proceeds locally. If the line is exclusive, the
write proceeds locally and the line state is changed
to dirty. If the line is shared, the write is done both to
the local cache and to main memory (thereby
purging this line from all other caches; see below),
and the line state is changed to exclusive. If the line
is invalid, the line is first read from main memory1 as
above and then the cache proceeds as in the shared
case.

• Line pushed out of cache (i.e. the cache line is
needed to make room for a different memory
address): If the line is dirty, write it back to main
memory. Change the state to invalid.
In addition, each cache snoops all of the other
caches’ transactions with the main memory through
the common bus and performs the following actions:
• Remote processor reads line: If the line is in
the dirty state here, change the state of the line to
shared and broadcast the data on the bus, telling the
main memory to update its copy; the remote
processor also gets the broadcasted data. If the line
is in the exclusive state here, change the state to
shared.
• Remote processor writes line: If the line is in
the shared, exclusive, or dirty state here, invalidate
it2.

Example
To illustrate the protocol, consider an example with
three processors, each with a one-entry cache.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - - I -

The processors start with empty caches. The main
memory initially contains the value 37 in the line at
address 4, 14 at address 5, and 64 at address 6 (the
lines are typically 16-128 bytes long but are
represented by single bytes for the sake of the
example).

1This read is only necessary if the processor modifies part of the line such as a single word. For this reason, some processor architectures,
including the PowerPC, provide instructions to clear an entire line, while the 68040 provides an instruction to copy an entire line of data.
2Getting the data from the bus and putting it into the local cache might create a stale copy because the remote processor now places its line in
the reserved state and will not send out notifications of further writes.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - 6 S 64

After processor 2 reads memory line 6, the data is
placed in its cache in the shared state3.

P0
Addr DataState

Addr Data
4

5

6

6 S 64

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - 6 S 64

Processor 0 then reads memory line 6 with the same
effect.

P0
Addr DataState

Addr Data
4

5

6

6 S 64

37
14
64

P1
Addr DataState

P2
Addr DataState

6 S 64 6 S 64

Processor 1 joins in and reads the same memory line.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
32

P1
Addr DataState

P2
Addr DataState

- I - 6 X 32

Now processor 2 writes 32 to line 6, invalidating the

other two processors’ caches and writing through to
main memory.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
32

P1
Addr DataState

P2
Addr DataState

- I - 6 D 16

At this point processor 2’s cache is in the exclusive
state, so it can modify line 6 locally at will without
writing through to main memory.

P0
Addr DataState

Addr Data
4

5

6

6 S 16

37
14
16

P1
Addr DataState

P2
Addr DataState

- I - 6 S 16

When processor 0 requests a read of line 6,
processor 2 provides the data and updates main
memory. Both caches are now in the shared state.

3The state is not reserved because P2 has no way of knowing that the line is not already cached somewhere else. An optimization of the
protocol provides an additional bus signal to P2 to let it know about this.

P0
Addr DataState

Addr Data
4

5

6

4 S 37

37
14
16

P1
Addr DataState

P2
Addr DataState

- I - 6 S 16

When processor 0 reads line 4, it displaces its
existing cache line. The previous line wasn’t dirty, so
no writeback is necessary.

Other Bus-Based Shared-Memory Architectures
Even with caches, the bus in the above scheme
becomes a bottleneck for more than three or four
processors. Furthermore, every cache has to get
involved in every main memory transaction, which
inherently bounds the performance of the system.
The following alternative bus-based schemes try to
overcome these problems.

P P P P

P P P P

P P P P

P P P P

Figure 3. Bus-Grid System
Each processor resides at an intersection of two buses.

Bus-grid systems such as the Wisconsin Multicube
[22] and Aquarius [9] rely on a grid of horizontal and
vertical buses for communication, with processors
present at the buses’ intersections. The Wisconsin
Multicube has memories attached to the vertical
buses, while Aquarius has a portion of memory
present with each processor.
The Wisconsin Multicube requires each processor on
a column to maintain a table of the dirty lines in all
processors on that column. Memory requests are
broadcast on a row bus. If one of the processors on
that row notices that the line is dirty in its column, it
will identify itself and route the transaction to a
processor in that column; otherwise, the processor at
the intersection of the given row and the column
corresponding to the memory containing the line will

process the transaction. The protocol includes
several more transactions to maintain each line in
either shared or exclusive state. The main weakness
of the protocol is that every time a write is made to a
line in the shared state to put it in the exclusive
state, an invalidation request has to be broadcast to
all processors, which again bounds the performance
of the system.

C1 C1

C0

P

C0

P

C0

P

C0

P

C0

P

C0

P

C0

P

C0

P

Mem

Figure 4. Hierarchical System
This system is a hierarchy of Goodman systems with several
levels of caches between the processors and main memory.

Hierarchical systems such as a hierarchical version of
Goodman’s cache coherence protocol [48]. The
computer is organized as a tree of buses. The main
memory is attached to the top-level bus; the other
pairs of levels are connected by caches. The
processors at the leaves are connected to the lowest-
level buses via local caches. An important invariant
is that every cache entry must also be present in all
of its parents’ higher level caches. Thus, the root
cache of a subtree can immediately determine that a
particular line is not present in its subtree. An
undesirable consequence of the invariant is that the
higher-level caches must be very large. The
Goodman protocol is followed at each level of the
hierarchy, with the addition that when an existing
entry in a higher-level cache is invalidated, it is also
invalidated in all of the cache’s children.
The Data Diffusion Machine [24] is also a hierarchy of
buses, but with an interesting twist: it has no main
memory—all data resides in caches. When a cache
fills up, it either erases or moves its data somewhere
else on the machine. Cache lines have no home—
they are created on the nodes that allocate them and
then diffuse through the machine. The Data
Diffusion Machine protocol is complicated by a
multitude of transitional states that manage reads,
writes, locks, and cache spills in progress.

The VMP-MC paper [23] contains an analytical model
and some simulation results to determine by how
much the traffic in upper-level buses is reduced by
sharing lower-level caches as compared to having an
equivalent total amount of cache memory separated
among the processors on a flat system. For realistic
assumptions, the ratio is about 0.5, meaning that
only half as many requests propagate to the upper-
level buses as would if the hierarchy were flattened;
thus, except in special cases, the hierarchical
systems considered here fail in significantly reducing
the bandwidth needed on the top-level bus.

Buses Can’t Keep Up
The above results look discouraging, so perhaps
there is something wrong with the concept of a bus
itself. Buses have long been popular in computers.
They allow many devices to be connected and offer
the advantage of cheap broadcasting, which allows
various snoopy caching techniques.
Nevertheless, as technology advances, buses are
becoming impractical. Due to their large dimensions
and propagation time limitations, even high-
performance buses have cycle times on the order of
20 to 30ns, while point-to-point links can be clocked
at 2ns. Simulations indicate that 2ns point-to-point
rings of 4 to 16 devices have approximately the
same throughput as buses clocked at 4ns [40]. The
ring’s latency can be slightly worse than a bus, but
the throughput is much better. Since 4ns buses are
not practical at present4, point-to-point networks are
a better choice. Moreover, as the number of devices
on a bus is increased, the cycle time increases, while
a network’s cycle time is not affected.
The trend away from buses is clearly visible. Kendall
Square Research’s KSR-1 [32] is an example of how
rings of point-to-point links can replace buses. The
KSR-1 is similar to the Data Diffusion Machine
presented earlier. It consists of one or more fast
unidirectional rings, each with 32 processors. Up to
33 rings can be connected together by a second-
level ring. Like the Data Diffusion Machine, the KSR-
1 consists entirely of cache—there is no main
memory. Unfortunately, the KSR-1 has a hierarchical
organization and may suffer from bandwidth
problems on the top-level ring as with the VMP-MC.

Network-Based Shared-Memory
Architectures
A fundamentally different approach is to allow an
arbitrary communication network between the
processors and memory and to rely on a protocol to

notify processors that their local caches’ data is
stale. Most of these protocols [42] rely on the
concept of a directory in main memory, which keeps
track which processors have copies of the data so a
writer can invalidate all outstanding copies of a
cache line. These protocols can be implemented
fully or partially in hardware, or they can be software-
based. The merits of compiler-scheduled software
cache coherence are studied in [38] and [1],
concluding that this form of coherence performs well
for structured problems but is highly sensitive to
minor variations in less structured situations.
Hardware, or, at least, hardware with software to
handle difficult cases appears to be the best
approach here.

P0
Addr DataState

6 S 16

P1
Addr DataState

P2
Addr DataState

5 D 14 6 S 16

Communication Network

Addr Data
4

5

6

37
14
16

P0P1P2D

1 1
1 1

Figure 5. Bitmap Directory
The main memory directory keeps track of which processors
have copies of data.

The original directory approach [11] is to maintain a
bitmap directory (Figure 5) with each main memory
line. One directory bit in each line corresponds to
each cache in the system; the bit is set whenever the
corresponding cache contains a copy of the data line.
An additional D bit is set if the data is dirty in a cache
(in which case exactly one other bit in the bitmap is
set). The processor caches run a protocol similar to
Goodman’s except that when a cache wishes to write
to a line that isn’t already dirty, it looks up the
processor numbers of other processors caching that
line in the directory and then sends invalidate
messages to

4Very high-speed buses exist in restricted applications such as the 500MHz RAMBus, which has a master at one end and slaves along the rest
of the bus; different clocks are used for sending and receiving, and the entire bus has to be physically small.

them5. The size of the directory bitmap is equal to
the number of processing nodes in the system, so
this scheme is only suitable for small systems.

P0
Addr DataState

6 S 16

P1
Addr DataState

P2
Addr DataState

5 D 14 6 S 16

Communication Network

Addr Data
4

5

6

37
14
16

D

1
P0 P2
P1

Figure 6. Limited Directory
The directory is smaller but can only keep track of a subset (at
most two in this example) of shared copies of a data line.

To reduce the size of the directory, the directory
format can be changed to an array of k pointers [3].
The pointers refer to at most k caches which can
have shared copies of the line. If all k pointers are in
use and another cache would like to get a copy of the
data, one of two things happens depending on the
implementation: one of the original k caches gets
invalidated, or the directory line enters a state where
the set of caches with copies of the data is unknown
and a broadcast will be required to invalidate all
caches the next time the line’s data is modified. This
scheme either causes thrashing in some cases or
requires occasional broadcasts; however, statistics
indicate that these situations are rare in most
programs even for small values of k such as 2 [47].
Another promising approach is to escape to software
when the number of shared copies exceeds the
capacity of the directory [2].
An even better approach is the Scalable Coherent
Interface (SCI) scheme [28], which has a directory
with one pointer in the main memory. When multiple
caches have copies of the data, the pointer points to
the first cache of a doubly-linked list threaded
through the caches. Specifically, when a cache A
requests data from the main memory and the data is
already cached in cache B, the main memory
immediately responds with a message telling A to
ask B instead (and changes its head pointer to point
to cache A). Cache A then asks cache B to get the
data and notifies B that A is now the head. If cache
A were doing a write, it would ask B to invalidate

itself and send back a pointer to B’s successor, if
any; A would then proceed to purge all the other
successors from the linked list in the same way.
When a cache line is replaced, the cache can remove
itself from the doubly-linked list by linking its
neighbors together. This scheme requires four
network transactions for a shared read and a number
of transactions and latency proportional to the
number of copies being invalidated for a write. This
scheme is an IEEE standard for very fast
communication services for a network of nodes.

P0
Addr DataLink

6 16

P1
Addr DataLink

P2
Addr DataLink

5 14 6 16

Communication Network

Addr Data
4

5

6

37
14
16

-

Figure 7. Linked Directory
The caches containing copies of data in memory are linked
into a doubly-linked list, represented here by gray lines. The
first cache in the list has the authority to invalidate the others
if it wants to acquire exclusive ownership of a line or write to
it.

A variant of this scheme is the Stanford Distributed-
Directory Protocol (SDD) [43], This protocol uses
singly-linked lists of caches instead of doubly-linked
ones; when a cache line is replaced, the cache must
invalidate all caches downstream from it first. SDD
includes an optimization in the common case where
cache A reads a value that is already in cache B—the
main memory forwards A’s request directly to B
rather than replying back to A and having it contact
B. This reduces the number of messages from four
to three but might deadlock if the network is full, so
the protocol uses the four-message scheme in that
case. Writing and obtaining exclusive access to a
cache line is done as in SCI.

5The actual protocol is a little more complicated to handle the case of two or more processors wanting to modify the same line at almost the
same time.

Topology
So far the directory protocols were examined without
regard to network topology. The two main kinds of
network topologies are hierarchies or variants of a
multicube.
Hierarchies allow recursive protocols and can map
well to hierarchies of physical packaging—chips,
boards, and cabinets—but the top levels can become
bottlenecks. Both kinds of topologies can take
advantage of locality. As observed before and in [5],
trees of rings suffer from bandwidth problems at the
root.
Meshes and multicubes tend to have better
performance characteristics. Their bandwidth scales
into large sizes much better, and machines with
thousands of processors have been built. Current
network speeds are fast enough that the exact mesh
or multicube topology doesn’t matter much, at least
until one starts to build machines with tens of
thousands of processors. On the J-Machine [14][15],
one can ignore topological locality altogether without
burdening the network until the machine size
exceeds a thousand processors [26], and this is true
for multicubes in general [29].

Other topologies are also possible, such as a fat tree6
in the Connection Machine 5 or the hybrid topology
in Dash [34], which is a mesh of nodes, each of which
has several processors on a local snooping bus.
Hybrid topologies can match physical packaging I/O
constraints well.
Does topology matter? For the foreseeable future, at
least some programmers will try to take advantage of
hardware topologies when mapping their applications
to get the best performance. Some of the
architectures, especially the hierarchical bus/ring-
based ones, don’t work well unless the mapping
limits traffic across the root; others, such as meshes
and fat trees, provide plenty of bandwidth for now.
Explicit hardware mapping can run into problems if
there are faults present in the machine, and it is non-
portable. In the end, for most applications it’s
probably best to request a logical geometry and let
the firmware pick an appropriate mapping. In return,
the machine topology should be able to support the
desirable mappings efficiently.

Strong and Weak Consistency
There are three important shared memory efficiency
enhancements that require some knowledge of the
semantics of the application. The first is the use of

weak consistency [16] for most data accesses.
A parallel system is strongly consistent if all memory
reads and writes can be placed in a total
chronological order. Strong consistency is expensive
to achieve in practice because it requires that if
processor B reads a variable x written by processor
A, B then performs a write to y which is read by
processor C, and finally C reads x, then C must get
the new value of x produced by A. Thus, A’s write of
x must reach C before any communication from A
can reach C through B. In practice, this requires that
each processor wait until a write is completed before
proceeding, introducing a significant performance
bottleneck.
A weakly consistent system requires only that the
memory operations be serializable locally—a
processor’s memory operations appear
chronologically consistent from its frame of reference
but not necessarily from the other processors’ view.
Furthermore, a certain set of memory locations or
operations7 can be distinguished as being
synchronizing—synchronizing operations must be
strongly ordered. Finally, synchronizing and non-
synchronizing memory accesses must not be
reordered or overlapped. Synchronizing operations
are used for items such as locks and queues, while
non-synchronizing operations are used for general
data. A processor can continue running immediately
after a non-synchronizing write is issued.
The PowerPC architecture supports weak consistency
and provides the SYNC and EIEIO (!) instructions [10]
as memory barriers.

Locks
The second architectural enhancement aims to
improve performance when dealing with heavily
contested locks. When n processors are all spinning,
trying to acquire the same lock using test-and-test-
and-set, O(n2) network operations are needed in
unoptimized cache coherence schemes before each
processor can get the lock once because the lock is
written n times, each time invalidating O(n) cached
copies on the other processors.

6A fat tree is a tree in which there are many redundant links at the higher levels. These links provide greater bandwidth and fault tolerance.
7Two variants of read and write instructions can be provided. Some architectures provide a barrier instruction instead that waits until all
pending memory operations complete before proceeding.

The solution is to extend the protocol to queue the
processors waiting for a contested lock; when a
processor releases the lock, it passes it to the next
one in the queue, requiring only O(n) network
operations.
This approach is presented in [21], where three
primitives are introduced: test-and-set, unset, and
queue-on-syncbit. The last one notifies the hardware
that this processor would like to be appended to a
queue waiting for a lock, if there is one. The same
operations can be used to efficiently implement other
synchronization primitives such as fetch-and-add,
work queues, and barriers.

Multitasking
Technology trends indicate that the speeds of
processors will continue to rise much faster than
memory or communication latency (but not
bandwidth) for the foreseeable future. Whereas
cache miss penalties were equivalent to one or two
instructions a few years ago, a future processor will
be able to execute tens or hundreds of instructions in
the time it takes to fetch a word from main memory
or another processor. Thus, it’s important to avoid
stalls on cache misses.
Memory latencies can be hidden (for the time being)
on sequential processors by executing other
instructions until the result is needed. The same
thing can be done on parallel computers as long as
excess parallelism is available—a processor can
switch to another task while the original one is
waiting for a remote reply. Thus, processors will
evolve to be able to run more than one instruction
stream at a time; this trend will be examined further
in the following sections.

Why Does This Matter?
The details of the implementation of shared memory
cannot be completely hidden from the programmer.
The weak consistency optimization must be exposed,
as it affects the semantics of the program, even if
one is programming in a high-level language like C.
Optimizing locks affects performance only, but it is
also exposed through the communication abstraction
to let the programmer notify the hardware about lock
operations; furthermore, practical hardware may
have limitations such as only supporting one lock per
cache line. Multithreading will be a revolutionary
change in the design of processors, and it is
inevitable.

3. Message-Passing
Architectures
The second paradigm for communication within a
parallel application is passing messages. A message-
passing system is conceptually organized as in Figure
8: each processor has a local memory and access to
a network which routes messages between the
processors.

P0 P1 P2 P3
Processors

Cache

Mem.

Communication Network

Cache

Mem.

Cache

Mem.

Cache

Mem.

Figure 8. Message-Passing Architecture
The processors communicate with other processors via a
network. Each processor’s memory and cache are local, so
there are no coherency problems.

Although message-passing architectures have
existed for a while, they typically provided only high-
overhead communication facilities—sending a
message involved an operating system call and a
protection domain switch, which by themselves
consumed about a millisecond. This may be
acceptable if the communication medium is an
Ethernet, but not in a modern parallel computer.
Decreasing communication overheads can improve
program running times by more than an order of
magnitude for a variety of applications [5]. The
ability to efficiently pass messages between
processors and have the destination processor
perform some activity upon receipt of a message can
be used to implement a great variety of
programming language constructs such as procedure
calls and returns, object migration, and barriers.
Achieving low communication overhead requires
streamlining of the way messages are sent and
received. The precise mechanism used to send and
receive messages can vary, but there are some
things the hardware should provide: efficient

sending of messages from user code, queueing of
incoming messages, and atomicity. Two projects
provide good illustrations of possible
implementations of efficient message passing: Active
Messages and the J-Machine.

Active Messages
Active Messages [17] is a simple communication
abstraction for parallel message-passing
architectures, including existing systems; it is
currently implemented on the CM-5, nCUBE/2 and the
J-Machine. A compiler can use Active Messages as a
basic mechanism to implement remote procedure
calls, block sends, and other communications. The
emphasis is on reducing the overhead of sending and
receiving messages—conventional libraries use
hundreds or thousands of microseconds to compose
and dispatch messages, while active messages can
be composed and dispatched in a few microseconds
on the same hardware.
An active message contains a program counter value
and zero or more words of data. When such a
message is received by the destination processor, it
begins executing a message handler starting from
the supplied PC value. That handler then interprets
the rest of the message and decides what action, if
any, to take. The source processor is required to
know the address of the handler on the destination
processor; this generally does not present a problem
if the handlers are fixed in each processor’s address
space.
An active message handler must be short and non-
blocking to avoid network backups and deadlocks.
Thus, active message handlers themselves are
unsuitable for performing nontrivial computations;
they cannot, for example, send messages at the
same or lower priority level as the received message.
Instead, an active message handler can be used to
receive arguments for a procedure call and schedule
the procedure invocation itself as a background
process. A program executes a remote function call
by sending the address of the procedure, arguments,
and a return pointer in a message to a remote node;
the message’s PC points to a handler that queues the
procedure invocation in a local task queue, which is
later retrieved by a background dispatcher. When
the procedure finishes, it sends the result back in
another message.
Active Messages can be implemented reasonably
well on existing hardware, but a few simple hardware
optimizations can make this model more efficient. It
helps to be able to compose and send messages
directly from registers without having to store them
in memory and use DMA. The entire received

message should be directly accessible so it does not
have to be read one word at a time or copied into
memory. The details of the routing hardware should
be hidden from the program so it can just designate
the destination address and message contents in
order to send a message. Finally, message sending
and receiving should be done at the user level for
most messages to avoid costly kernel calls.

J-Machine
The J-Machine [14] has SEND instructions to inject
message words directly into the network, making it
very easy to inject messages. On the receiving end,
the J-Machine queues messages in a circular buffer
on each node (this is an extremely fast operation due
to the memory design). The J-Machine processors
automatically handle incoming messages one at a
time, dispatching on the PC values in their first
words. If a J-Machine procedure calls another
procedure, it executes the SUSPEND instruction to let
other messages run; the compiler ensures that the
procedure copied all of its needed arguments from
the message into an activation frame by this point.
Figures 9 and 10 show the J-Machine procedure call
and return messages.

MSG

Argument 0

Argument 1

Argument n-1

…

Frame virtual ID for first reply value

Frame slot offset for first reply value

0

1

2

3

2+n

3+n

1+n

Call handler PC Message length

Function virtual ID

…

2m+n

1+2m+n

Frame virtual ID for last reply value

Frame slot offset for last reply value

Figure 9. J-Machine Call Message
This message is used to initiate a remote procedure call. The
Call handler PC is the address of a four-instruction routine
that translates the function virtual ID and then jumps to the
function code.

MSG

Reply value

Reply handler PC 40

1

2

3

Frame virtual ID

Frame slot offset

Figure 10. J-Machine Reply Message
This message returns the result of a remote procedure call.

Unlike the Active Messages proposal, a J-Machine
message handler can perform arbitrary tasks,
including sending other messages. Procedure calls
are executed directly rather than being stored in a
task queue. Unfortunately, this means that the
hardware message queue frequently overflows if the
procedure calls are time-consuming; messages in the
hardware queue then have to be copied to other
portions of memory. The Active Messages
architecture, on the other hand, avoids the problem
of message queue overflows, but its the task queue
is subject to overflows, and, furthermore, every
procedure invocation must be copied rather than
only non-leaf procedures as on the J-Machine. Quick
requests do get handled faster under Active
Messages, but the same thing could be done on the J-
Machine by using more priority levels8.
The J-Machine also provides for hardware support of
a user-defined translation between virtual and
physical addresses. Even though a processor cannot
directly reference another processor’s memory, it can
contain pointers (virtual IDs) to objects there and can
request actions by sending messages to the
processor containing an object. Each processor
manages its own translation between virtual IDs and
physical memory addresses; it can, for example,
relocate objects without having to notify any other
processors. The translation is flexible enough to
allow an object to easily migrate from one node to
another or even to a disk.

Other Communication
Mechanisms
In addition to efficient message sending and
receiving, there are other useful message-passing
communications mechanisms. One useful feature
which neither Active Messages nor the J-Machine
provides is atomicity of message sends. This permits
a processor to cancel a message send if the entire
message cannot be accepted by the network and is
very useful in avoiding deadlocks in protocols; for

example, the distributed cache coherence scheme in
[43] optimizes out many network operations. Due to
dependency cycles (Figure 11), this would not be
possible if processors were committed to sending the
rest of the message once they initiated a message
send9.

P0 P1

P2 P3

msg.

msg.

msg.msg.

Figure 11. Message Deadlock
If one or more processors try to send messages to each other
in a cycle and the network buffers fill up while the processors
all wait for the network, the machine will deadlock. Deadlocks
can be avoided by canceling message sends, moving data from
the network buffers to some other place, or by using multiple
priority levels or virtual channels so cycles don’t exist.

In many applications the availability of several
priority levels allows simple calls/returns without the
need to allocate large buffers or worrying about
deadlocks. Moreover, separate priority levels are
useful for the supervisor and for debugging purposes.
Another set of mechanisms concerns protection. If a
message-passing computer is time- or space-shared,
the processes should not interfere with one another.
This includes network contention—a process should
not be able to saturate another’s network. This goal
can be accomplished by having the processes run in
disjoint parts of the machine with hardware message
destination address checking or by having them use
different virtual network channels10. Virtual network
channels can guarantee minimum bandwidths to
processes without wasting wire bandwidth if not all
channels are busy [8]. Another element of protection
is the ability to drain a portion of a network of
messages without dispatching them for debugging
purposes or to time-share processes. The CM-5
accomplishes this with an “all-fall-down” mode where
messages currently in the network are dropped into
nearby processors; this has the advantage of
requiring only fixed-size buffers on the processors.

8This isn’t done now due to quirks in the instruction set.
9The J-Machine handles this problem by transferring messages into an overflow buffer if a message queue overflows; if the overflow buffer also
overflows, a higher-priority network level must be used and things get quite complicated.
10A virtual network channel appears to be a logically separate network channel but actually shares wires with other network channels.

iWarp [8] provides an additional facility for systolic
communication. A pair of nodes can establish a
channel between them for systolic communication,
thereby reserving a virtual network link between the
two nodes. The two nodes are then able to
communicate individual words quickly, without
routing information. This facility permits non-
blocking emulation of various network topologies and
may be useful for multimedia applications which
require a guaranteed bandwidth.

Multitasking
Message-passing mechanisms are closely related to
multitasking. It would be wasteful (and cause
deadlocks) to make a processor wait for a result from
a remote function call before proceeding; a superior
solution is to switch to another task while the original
one is waiting for a remote reply. The speed of
context switches greatly affects the programming
style of the machine—slow context switches
encourage the use of coarse-grain parallelism and
busy-waiting.
On conventional processors, even Active Messages
on the CM-5, context switches require a sizable
amount of time to switch the process state. J-
Machine context switches take about 30 instructions,
which is still large. Machines exist such as HEP [30]
and Monsoon [39] that have zero context switching
times (as long as the set of active contexts doesn’t
over- or underflow), but they suffer from poor
sequential performance. The 88110-based dataflow
architecture *T [37] has faster context switching at
the expense of reducing the register set available to
sequential tasks and imposing constraints on the
compiler. Ideally, a machine should have near-zero
context switching time while also having good
sequential performance; the M-Machine tries to
achieve that goal.
Unfortunately, fine-grain parallelism can negate
some of the benefits of local caches because the
working set becomes larger. TAM [13] attempts to
group executions of related tasks together, but this
area is still relatively unexplored.

4. Distributed System
Communication
Unlike shared memory and message passing,
communication in distributed systems is much less
homogeneous. There are a number of applications
and systems for communication, with no particular
abstraction being dominant except at the lowest OSI

levels [50] such as unreliable packet delivery at the
network layer (see Figure 12). Some systems
provide only file system services, others allow
remote procedure calls, while still others provide
higher-level application services. Continuing with the
direction of the previous sections, this section will
concentrate on services that would be useful within
an application running on several processors or
computers. Such services tend to be function
libraries and higher-level operating system services
rather than mere distributed filing systems.
Several approaches in research systems are
described below. There are many others; some, such
as using AppleEvents or OCE will be familiar to many
readers.

Layer Services provided
Application User services
Presentation Exchange of structured data
Session Establish and maintain session

bindings between
communicating entities

Transport Transport data between session
entities

Network Route packets over network
Datalink Send packets over a single

physical network segment
Physical Exchange bits

Figure 12. OSI Reference Model
A network organization conforming to the OSI Reference
Model is composed of distinct abstractions built on top of one
another, each one implementing new functionality on the one
below it. OSI systems provide a wide set of functionality at
the expense of high overhead needed to interpret higher-level
protocols in terms of lower-level ones.

Systems
PVM [41][19] is an example of a communication
architecture for a distributed system of
heterogeneous computers. PVM is a coarse-grain
protocol for communicating among programs that
implements data translation, shared memory
emulation, process and event operations, broadcasts,
barriers, and locks. Machines with different
processors or architectures can transparently
communicate with each other; data formats are
automatically translated and the appropriate
program binaries selected. A PVM parallel programs
can run simultaneously on a vector supercomputer,
highly parallel machine, and a network of
workstations, taking advantage of each
architecture’s best features. PVM is implemented as
a library and supports a variety of source languages.
One

nice touch in PVM’s is an X-Windows graphical
interface, HeNCE, for viewing and debugging parallel
programs [18]
PVM assumes only that unreliable, unsequenced,
point-to-point communication facilities exist among
the participating computers; a test implementation of
PVM uses the UDP protocol. Shared memory,
barriers, and broadcasts are emulated with point-to-
point communications, making them inefficient—an
8-byte message takes 15ms, and a 64-process
barrier takes 0.6 seconds! Clearly, an application
must be divided into large chunks in order not to be
swamped by communication overhead. PVM is most
useful for interfacing large modules to each other
such as orchestrating communication between a
vector supercomputer, a parallel computer, and a
graphics workstation for visualizing the data. It can
also be used to take advantage of idle time on
networks of workstations as long as the problem
does not require low-overhead communication.
The Nectar system [6] has the same goal as PVM—
computation on a network of heterogeneous
computers—but it uses lower-level facilities to
overcome PVM’s speed problems caused by
traversing the OSI hierarchy. In particular, Nectar
uses a custom high-speed fiber-optic network for
high-throughput, low-latency communication among
the nodes. In the spirit of iWarp, both circuit and
packet switching are supported, and communication
paths can be programmed; in addition, a
communication path can be split in the network to
implement multicasting. Nectar uses plug-in cards
that implement memory-mapped, user-level I/O to
eliminate the overhead of kernel calls for
communication while retaining compatibility with
existing computers. RISC processors called CABs
handle communication activities for the host nodes.
Emerald [27][31] is a complete language and
environment for programming distributed systems.
Unlike many other parallel and distributed languages,
Emerald provides a single model for sequential and
parallel computing: programs work with the same
kinds of objects both locally and globally. On the
other hand, Emerald is running on distributed
clusters of workstations where local computation
performance is orders of magnitude greater than
network latency, so there is considerable incentive
for the system to classify object usages as local or
global in order to permit optimizations; the system
can do this automatically in some cases. In order to
improve efficiency, Emerald can move parameter
objects to the site of a remote function call at the
time the call is made. Emerald communication is
coarse-grained and requires overhead to translate
object addresses between the nodes’ local address
spaces. This permits fast sequential computation at

the expense of extra computation on message sends.
Amber [12] is an implementation, based on Emerald,
of C++ on a distributed network of homogeneous
workstations, each of which contains several
processors communicating by shared memory.
Unlike Emerald, Amber maintains a global address
space for all objects in the system and simply maps
them in and out of local memories using virtual
memory techniques; this helps reduce Amber’s grain
size. Unless specified otherwise, when a thread
references a remote object, the thread will travel to
the object rather than the object migrating to the
thread’s current location.
Linda [4] is a communications kernel that can be
interfaced to many languages. It defines a global
tuple database with three basic operations: adding,
removing, and reading tuples. Tuples can be
selected by matching on arbitrary elements.
Implementations of Linda exist for various shared-
memory and message-passing systems, although the
message-passing implementations in [4] did not
appear to be particularly efficient or scalable—they
either replicated the tuple space over every
processor or broadcast match requests to every
processor.

Multiple Representations
When concurrent programs are run on a network of
heterogeneous machines, problems of differing
representations of data and code often arise.
Problems appears both at the low level of byte
ordering and at higher levels of data structures and
content. The traditional approach is to define a
canonical representation for communicated data
such as XDR [36] and to produce different code
images for different machines as is done in PVM.
Unfortunately, if the canonical data representation is
different from either the source or destination
representation, two conversions will result instead of
one or even none. One solution is to negotiate a
common representation that is efficient for at least
one of the parties to the communication. More
involved protocols can also be used [45], with
extraordinary gains in cases where converting data
to and from the canonical form is slow.
Unfortunately, this approach does not work as well if
the communication is deferred over time.
Programs designed for a parallel computer can be
run on heterogeneous machines by compiling
modules for the different machines. However,
migration becomes difficult, as the state of a running

process is difficult to capture in a machine-
independent way. Incredibly, [44] provides an
approach based on incremental recompilation11, but it
restricts compiler optimizations to require the
machine state to agree with the source program on
procedure calls.

Robustness
Atomicity, reliability, and security play a very
important role in communications. Some systems,
especially long-lived or distributed ones, can recover
from communication errors or even node crashes.
Argus [35] is the classic robust system, with support
for nested atomic transactions and fault recovery.
Although robustness is a system and language-
design issue, decisions about reliability have to be
visible at the communication abstraction level as
well; they should not be added as an afterthought
[7].

5. Discussion

Is there an Ideal Substrate?
One goal of research in communication abstractions
is to find an abstraction that is usable on a wide
range of systems for a wide range of applications.
An example of such an abstraction is the use of
virtual memory on sequential machines for managing
the memory hierarchy—the vast majority of
programs can disregard virtual memory details and
run just fine12.
Cache-coherent shared memory is one candidate for
being a nearly universally applicable abstraction for
parallel systems of today’s technology—it is fast,
scalable (if directory schemes are used), and nearly
all paradigms can be implemented efficiently with it.
Using shared memory does involve hardware costs,
but they are small compared to the costs of writing
software.
Active Messages is another candidate for a universal
abstraction—it too is fast and scalable. Current
implementations still have too much overhead to
allow efficient emulation of the shared memory
paradigm using messages, but this will likely change.
Message-passing can be implemented on top of
shared memory, and shared memory can be

implemented on top of message passing, a concept
recognized in Mach [49]. In the end, cache-coherent
shared memory and Active Messages will merge into
one paradigm that supports memory requests as a
special kind of messages, handled mostly in
hardware. Systems may differ in the amount of
hardware assistance they provide for memory
request messages, but this appears to be the most
flexible combination for compact systems. The
common cases can be handled less expensively in
hardware, while many of the esoteric cases can be
done by software. Nevertheless, there are several
issues which have to be addressed before this
happens, as outlined below.

Local Needs
Future processor will have to include support for
efficient task switching to mask the hundreds of
instruction opportunities that will be wasted by a
memory fetch caused by a cache miss; the same
mechanism will help keep the processor busy while it
is waiting for network memory references and
remote procedure call results. Low-latency
communications also require fast response time from
the target of a message. Current RISC processors
have remarkably poor interrupt response times due
to the need to switch large register files and process
states. At the same time, processor designers are
running out of ideas to take advantage of the
parallelism inherent in a stream of instructions; four
or five instructions at a time seems to be the
maximum [46]. Both of these problems can be
neatly solved by building a multithreading processor
or a chip with several independent processing units
sharing memory; some threads perform computation,
while others serve remote requests. iWarp and *T
are following this approach.

Protection
The mechanism of address space mapping and inter-
process protection will also change. A large reason
for the high overhead of process switches on current
computers is the need to remap address spaces to
enforce protection. This is impractical on processors
that perform a context switch every nanosecond, so
a different mechanism has to be used. Fortunately,
such a mechanism exists and has been known for a
long time—capability-based protection.

11Can you imagine running a program on a Mac, going into the debugger, saving its state, and then resuming it under Microsoft Windows on an
IBM clone, where in both cases the program runs at full speed in native mode?
12However, the situation is now changing with greater use of interactive and real-time applications on workstations; unpredictable delays can
be quite bothersome when running multimedia applications.

In a simple form of capability-based protection,
memory is divided into variable-size segments; an
address consists of a segment descriptor and an
offset (this need not bring up the 80x86 nightmares
—segments can be arbitrarily long or short and are
completely orthogonal to the paging mechanism).
Offsets are integers, but segment descriptors are
words marked with a special bit that can only be
changed by the kernel. A user program can read,
write, copy, or compare for equality segment
descriptors in registers and memory at will, but it
cannot forge or change them. Thus, a user program
can only access memory for which it has segment
descriptors, either generated by operating system
calls or because it found one somewhere in memory
it can reference. Programs can share segments
simply by passing segment descriptors to each other.
Under capability-based protection, user programs are
completely unaware of where in the address space
they reside, and there is no need to reconfigure the
MMU between processes.

Other Issues
Some applications such as real-time video
manipulation can benefit from bandwidth guarantees
provided by circuit switching. Bandwidth is hard to
guarantee using plain message passing, so for these
applications the network channels should be
software-configurable at a lower level as in iWarp and
Nectar. Bandwidth guarantees or priority levels are
also useful for security reasons to prevent a runaway
user program from starving out the operating
system.
Other applications such as timesharing and garbage
collection require the ability to inspect the messages
currently in the network and optionally remove them
from the network. This can be done as in the CM-5
or by providing a mode where messages are not
executed by receiving nodes.
Network hardware reliability is a thorny issue. The
current practice is to use software to provide robust
services on distributed networks and to ignore the
problem (or merely detect faults and halt the
machine if one occurs) on parallel computers. A
software solution is undesirable here because it
requires the originating node to keep track of
messages it sends out until it knows that they are
received, thus involving extra copying and overhead.
The efficiency and simplicity goals of Active
Messages would be violated unless the
communications substrate can support reliable
message routing and delivery. Of course, the difficult
problem of what to do when a node crashes remains.

Distributed Needs
The needs of distributed networks overlap those of
parallel computers, but they also extend over a much
broader range. Some localized distributed networks
can act like parallel computers, but others require
facilities such as wide-area routing and naming,
extensive security, and tolerance of high latency and
low bandwidth. Public network security
considerations alone preclude efficient user-level
network access of shared memory and Active
Messages; both of these systems rely on hardware
source checking of destination addresses or
capability-based protection, which doesn’t work well
on a public network, where anyone can snoop on
wires, intercept messages, modify and misroute
them, and flood networks with spurious data.
Encryption schemes exist to reliably deal with all of
these problems, but they are time-consuming (and,
unfortunately, haven’t been implemented widely).
Of course, shared-memory and Active Message
implementations can be supported on distributed
networks to provide compatibility but don’t work as
well there because of the above problems and
unavoidable high latency—there is no way to get
around speed of light limitations, and we will have to
deal with compatibility with existing networks for a
long time. Thus, applications themselves have to be
tuned to work around the effects of latency. The
future will bring networks of hundreds of millions of
computers interconnected via networks with an
extremely large range of bandwidths. Protocols such
as ISDN and ATM for handling this are starting to
emerge, but this field is still in its infancy.

6. Conclusion
Parallel processing will move into the mainstream
much more rapidly when applications can be easily
ported and interfaced between machines of various
architectures. The lack of standardization of
communication architectures is a major stumbling
block to this goal, but a universal communication
paradigm—low-overhead message passing with
support for shared memory—for parallel computers
appears within reach. The situation is worse in the
distributed arena, where the requirements span
many orders of magnitude of bandwidth and latency
and security needs.

Bibliography
[1] Sarita V. Adve, Vikram S. Adve, Mark D.
Hill, and Mary K. Vernon. “Comparison of
Hardware and Software Cache Coherence
Schemes.” Proceedings of the 18th
International Symposium on Computer
Architecture, May 1991, pp. 298-308.
[2] Anant Agarwal, David Chaiken, Kirk
Johnson, David Kranz, John Kubiatowicz, Kiyoshi
Kurihara, Beng-Hong Lim, Gino Maa, and Dan
Nussbaum. The MIT Alewife Machine: A
Large-Scale Distributed-Memory
Multiprocessor. MIT Laboratory for Computer
Science Technical Report 454, June 1991.
[3] Anant Agarwal, Richard Simoni, John
Hennessy, and Mark Horowitz. “An Evaluation
of Directory Schemes for Cache Coherence.”
Proceedings of the 15th International
Symposium on Computer Architecture, June
1988, pp. 280-289.
[4] Sudhir Ahuja, Nicholas Carriero, and
David Gelernter. “Linda and Friends.” IEEE
Computer, 19:8, August 1986, pp. 26-34.
[5] Marco Annaratone, Claude Pommerell,
and Roland Rühl. “Interprocessor
Communication Speed and Performance in
Distributed-Memory Parallel Processors.”
Proceedings of the 16th International
Symposium on Computer Architecture, June
1989, pp. 315-324.
[6] Emmanuel A. Arnould, François J. Bitz,
Eric C. Cooper, H. T. Kung, Robert D. Sansom,
and Peter A. Steenkiste. “The Design of Nectar:
A Network Backplane for Heterogeneous
Multicomputers.” Proceedings of the Third
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April 1989, pp. 205-216.
[7] Henri E. Bal. “Fault-Tolerant Parallel
Programming in Argus.” Concurrency: Practice
and Experience, 4:1, February 1992, pp. 37-55.
[8] Shekhar Borkar, Robert Cohn, George
Cox, Thomas Gross, H. T. Kung, Monica Lam,
Margie Levine, Brian Moore, Wire Moore, Craig
Peterson, Jim Susman, Jim Sutton, John
Urbanski, and Jon Webb. Supporting Systolic
and Memory Communication in iWarp. CMU
Computer Science Technical Report CS-90-145,
September 1990.

[9] Michael Carlton and Alvin Despain.
“Aquarius Project.” IEEE Computer, 23:6, June
1990, pp. 80-83.
[10] Brian Case. “IBM Delivers First PowerPC
Microprocessor.” Microprocessor Report, 6:14,
October 28, 1992, pp. 1, 6-10.
[11] Lucien M. Censier and Paul Feautrier. “A
New Solution to Coherence Problems in
Multicache Systems.” IEEE Transactions on
Computers, C-27:12, December 1978, pp. 1112-
1118.
[12] Jeffrey S. Chase, Franz G. Amador,
Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber System:
Parallel Programming on a Network of
Multiprocessors. University of Washington
Department of Computer Science Technical
Report 89-04-01, April 1989.
[13] David E. Culler, Anurag Sah, Klaus Erik
Schauser, Thorsten von Eicken, and John
Wawrzynek. “Fine-Grain Parallelism with
Minimal Hardware Support: A Compiler-
Controlled Threaded Abstract Machine.”
Proceedings of the Fourth International
Conference on Architectural Support for
Programming Languages and Operating
Systems, April 1991, pp. 164-175.
[14] William J. Dally et al. “Architecture of a
Message-Driven Processor.” Proceedings of the
14th International Symposium on Computer
Architecture, June 1987, pp. 189-196.
[15] William J. Dally et al. “The Message-
Driven Processor: A Multicomputer Processing
Node with Efficient Mechanisms.” IEEE Micro,
12:2, April 1992, pp. 23-39.
[16] Michel Dubois, Christoph Scheurich, and
Faye Briggs. “Memory Access Buffering in
Multiprocessors.” Proceedings of the 13th
International Symposium on Computer
Architecture, June 1986, pp. 434-442.

[17] Thorsten von Eicken, David E. Culler,
Seth Copen Goldstein, and Klaus Erik Schauser.
“Active Messages: a Mechanism for Integrated
Communication and Computation.”
Proceedings of the 19th International
Symposium on Computer Architecture, May
1992, pp. 256-266.
[18] G. A. Geist and V. S. Sunderam.
“Network-Based Concurrent Computing on the
PVM System.” Concurrency: Practice and
Experience, 4:4, June 1992, pp. 293-311.
[19] G. A. Geist and V. S. Sunderam. “The
PVM System: Supercomputer Level Concurrent
Computation on a Heterogeneous Network of
Workstations.” Proceedings of the 6th
Distributed Memory Computing Conference,
May 1991, pp. 258-261.
[20] James R. Goodman. “Using Cache
Memory to Reduce Processor-Memory Traffic.”
Proceedings of the 10th International
Symposium on Computer Architecture, June
1983, pp. 124-131.
[21] James R. Goodman, Mary K. Vernon, and
Philip J. Woest. “Efficient Synchronization
Primitives for Large-Scale Cache-Coherent
Multiprocessors.” Proceedings of the Third
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April 1989, pp. 64-73.
[22] James R. Goodman and Philip J. Woest.
“The Wisconsin Multicube: A New Large-Scale
Cache-Coherent Multiprocessor.” Proceedings
of the 15th International Symposium on
Computer Architecture, June 1988, pp. 422-
431.
[23] Hendrik A. Goosen and David R.
Cheriton. “Predicting the Performance of
Shared Multiprocessor Caches.” Cache and
Interconnect Architectures in Multiprocessors,
Michel Dubois and Shreekant S. Thakkar, ed.
Kluwer Academic Publishers, 1990, pp. 153-164.
[24] Erik Hagersten, Seif Haridi, and David H.
D. Warren. “The Cache Coherence Protocol of
the Data Diffusion Machine.” Cache and
Interconnect Architectures in Multiprocessors,
Michel Dubois and Shreekant S. Thakkar, ed.
Kluwer Academic Publishers, 1990, pp. 165-188.
[25] R. Hannemann. “Physical Technology for
VLSI Systems.” Proceedings of the IEEE
International Conference on Computer Design:
VLSI in Computers, 1986, pp. 48-53.

[26] Waldemar Horwat. Concurrent
Smalltalk on the Message-Driven Processor.
MIT Artificial Intelligence Laboratory Technical
Report 1321, September 1991.
[27] Norman C. Hutchinson. Emerald: An
Object-Based Language for Distributed
Programming. University of Washington
Technical Report 87-01-01, January 1987.
[28] David V. James, Anthony T. Laundrie,
Stein Gjessing, and Gurindar S. Sohi. “Scalable
Coherent Interface.” IEEE Computer, 23:6,
June 1990, pp. 74-77.
[29] Kirk L. Johnson. “The Impact of
Communication Locality on Large-Scale
Multiprocessor Performance.” Proceedings of
the 19th International Symposium on
Computer Architecture, May 1992, pp. 392-
402.
[30] Harry F. Jordan. “Performance
Measurements on HEP–A Pipelined MIMD
Computer.” Proceedings of the 10th
International Symposium on Computer
Architecture, June 1983, pp. 207-212.
[31] Eric Jul, Henry Levy, Norman Hutchinson,
and Andrew Black. “Fine-Grained Mobility in the
Emerald System.” ACM Transactions on
Computer Science, 6:1, February 1988, pp.
109-133.
[32] Kendall Square Research, Usenet
comp.parallel mailing, February 22, 1992.

[33] James T. Kuehn and Burton J. Smith.
“The Horizon Supercomputing System:
Architecture and Software.” Proceedings of
Supercomputing ‘88, November 1988, pp. 28-
34.
[34] Daniel Lenoski, James Laudon, Truman
Joe, David Nakahira, Luis Stevens, Anoop Gupta,
and John Hennessy. “The DASH Prototype:
Implementation and Performance.”
Proceedings of the 19th International
Symposium on Computer Architecture, May
1992, pp. 92-103.
[35] Barbara Liskov and Robert Scheifler.
“Guardians and Actions: Linguistic Support for
Robust, Distributed Programs.” ACM
Transactions on Programming Languages and
Systems, 5:3, July 1983, pp. 381-404.

[36] B. Lyon. Sun External Data
Representation Specification. Sun
Microsystems, Inc. Technical Report, 1984.
[37] Rishiyur S. Nikhil, Gregory M.
Papadopoulos, and Arvind. *T: A Killer Micro
for a Brave New World. MIT Computation
Structures Group Memo 325, July 1991.
[38] Susan Owicki and Anant Agarwal.
“Evaluating the Performance of Software Cache
Coherence.” Proceedings of the Third
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April 1989, pp. 230-242.
[39] Gregory M. Papadopoulos and David E.
Culler. “Monsoon: An Explicit Token-Store
Architecture.” Proceedings of the 17th
International Symposium on Computer
Architecture, June 1990, pp. 82-91.
[40] Steven L. Scott, James R. Goodman, and
Mary K Vernon. “Performance of the SCI Ring.”
Proceedings of the 19th International
Symposium on Computer Architecture, May
1992, pp. 403-414.
[41] V. S. Sunderam. “PVM: A Framework for
Parallel Distributed Computing.” Concurrency:
Practice and Experience, 2:4, December 1990,
pp. 315-339.
[42] Shreekant Thakkar, Michel Dubois,
Anthony T. Laundrie, and Gurindar S. Sohi.
“Scalable Shared-Memory Multiprocessor
Architectures.” IEEE Computer, 23:6, June
1990, pp. 71-74.
[43] Manu Thapar and Bruce Delagi.
“Stanford Distributed-Directory Protocol.” IEEE
Computer, 23:6, June 1990, pp. 78-80.

[44] Marvin M. Theimer and Barry Hayes.
“Heterogeneous Process Migration by
Recompilation.” Proceedings of the 11th
International Conference on Distributed
Computing Systems, May 1991, pp. 18-25.
[45] Earl DeWitt Waldin III. Using Multiple
Representations for Efficient Communication
of Abstract Values. MIT Laboratory for
Computer Science Technical Report 553,
September 1992.
[46] David W. Wall. “Limits of Instruction-
Level Parallelism.” Proceedings of the Fourth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April 1991, pp. 176-188.
[47] Wolf-Dietrich Weber and Anoop Gupta.
“Analysis of Cache Invalidation Patterns in
Multiprocessors.” Proceedings of the Third
International Conference on Architectural
Support for Programming Languages and
Operating Systems, April 1989, pp. 243-256.
[48] Andrew W. Wilson Jr. “Hierarchical
Cache/Bus Architecture for Shared Memory
Multiprocessors.” Proceedings of the 14th
International Symposium on Computer
Architecture, June 1987, pp. 244-252.
[49] Michael Young, Avadis Tevanian, Richard
Rashid, David Golub, Jeffrey Eppinger, Jonathan
Chew, William Bolosky, David Black, and Robert
Baron. “The Duality of Memory and
Communication in the Implementation of a
Multiprocessor Operating System.” ACM
SIGOPS Operating System Review, 21:5,
November 1987, pp. 63-76.
[50] Hubert Zimmermann. “OSI Reference
Model—The ISO Model of Architecture for Open
Systems Interconnection.” IEEE Transactions
on Communications, 28:4, April 1980, pp. 425-
432.

