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Abstract

Parallel and distributed programs are entering the mainstream—a 1024-processor Connection Machine is now
the fastest computer in the world, while at other places users are routinely running distributed programs on
networks of workstations.  One of the most important aspects of parallel programming is the abstraction of the
communication  channels  between  processors  as  presented  to  the  programmer—how  does  one  implement
communication among processes in a program in such a way that is very efficient both when the processes are
on the same node and when they are on remote nodes?

This paper presents  and compares several  approaches of  viewing communication,  including cache-coherent
shared  memory,  message passing,  and higher-level  protocols.   The  important  hardware constraints  will  be
examined,  and  some  predictions  for  the  future  will  be  presented.   A  number  of  literature  references  are
provided.

1.  Introduction

Issue
As the densities of integrated circuits increase over
time,  parallel  and  distributed  processing  are
becoming  more  important  and  widespread.
Unfortunately, unlike in sequential computing, there
is a lack of consensus on the mechanisms needed for
parallel  and  distributed  computer  systems.   In
particular,  communication  primitives  differ  widely
among parallel architectures and operating systems.
Some  parallel  programs  communicate  by  sharing
data in memory, others by sending messages such
as  AppleEvents,  and  still  others  by  higher-level
operating system calls.
Why  should  Macintosh  developers  concern
themselves  with  parallel  programming,  and,
specifically, communication in parallel programming?
There are a couple of reasons:  First,  networks are
becoming very widespread and offer a great resource
for running large or multi-user applications.  Second,
the  densities  of  integrated  circuits  continue  to
increase geometrically [25], and by the turn of the
century will permit densities of 100 million transistors
on a chip (by comparison, a 68040 has slightly over
one million transistors).  Increasing cache sizes and
sizes and numbers of  logic  units  in processors will
shortly reach the point of diminishing returns, forcing
architects  to  put  multiple  processors  onto  a  single
chip in order to significantly improve performance for
the coming generation of computer applications.  The
goal  of  this  paper  is  to  explore  communication
paradigms that let programs run efficiently on a wide

range of parallel architectures, from fast sequential
processors  to  tightly-coupled  parallel  systems  to
distributed systems.

Outline
This  paper  examines  and  contrasts  three
communication  paradigms:  cache-coherent  shared-
memory, message passing, and high-level distributed
system  communication  services.   Even  lower  and
higher-level  abstractions  such  as  electronic  mail
handling exist, but they will not be discussed here.
One  of  the  predictions  made  here  is  that  as
technology  advances,  the  shared  memory  and
message passing paradigms are going to merge into
what could be a universal  localized communication
paradigm.   However,  at  this  point  it’s  not  clear
whether distributed communication services can be
neatly integrated with the other two.
The three communication paradigms are  discussed
individually  in  Sections  2,  3,  and  4.   Section  5
compares them and describes the coming unification
of shared memory and message passing.
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2.  Shared-Memory 
Architectures
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Figure 1.  Shared-Memory Architecture

A  shared-memory  architecture  appears  to  the
programmer  as  several  processors  sharing  a
common  pool  of  memory  as  in  Figure  1.   Each
processor  can  read and write  words of  memory;  a
word  of  memory  typically  appears  at  the  same
address for each processor.

Caching
The architecture in Figure 1 suffers from the absence
of caching.  A few architectures without caching have
been  proposed;  Horizon  [33]  is  an  interesting
example in that it demonstrates how task switching
can  be  used  to  hide  the  latencies  of  memory
operations to the extent that the processors can keep
themselves  busy  without  caches—each  processor
can work on 1024 tasks at the same time!  The bus
has  been  replaced  by  a  three-dimensional  mesh
network which has the throughput to  handle all  of
the  memory  requests.   Nevertheless,  this
architecture  is  not  resource-efficient,  as  it  has  N3

memories and only N2 processors, for N=16.
The  vast  majority  of  architectures  under
consideration  today  make  use  of  local  caches
attached  to  processors  as  in  Figure  2  (Some
architectures are composed entirely  of  caches [24]
[32]).   The  data  in  these  caches  has  to  be  kept
coherent in some manner so a processor will not read
old data from its cache after another processor has
modified  the  data.   Note  that  a  shared-memory
architecture  does  not  have  to  be  implemented  in
hardware according to the block diagram in Figure 1;
in  fact,  some of  the  architectures  discussed below
have different topologies, don’t use buses at all, or
communicate by message passing.
Two  important  aspects  of  shared-memory  systems
are  support  for  synchronization  and  the  ordering

semantics.  Synchronization in its simplest form can
be achieved using indivisible test-and-set operations;
other  variants  exist  which  are  fundamentally  more
powerful.   The  simplest  shared-memory  systems
have strong consistency  ordering semantics,  which
means that there exists the concept of a global time
such that processors read and write words one at a
time, and events are perceived in the same order by
all  processors.   Other  consistency  semantics  exist
with  weaker  assumptions somewhat  reminiscent  of
Einstein’s  special  relativity;  one  of  these  will  be
discussed later in this section.

Bus-Based Shared-Memory 
Architectures
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Figure 2.  Shared-Memory with Caches
The  processors  communicate  only  with  their  caches,  which
then communicate with  the main memory and other caches
through a common bus.

If one were to connect several processors directly to
main memory as in Figure 1, the performance would
not  be  much  better  than  having  one  processor
because  the  memory  bus  would  saturate.   Putting
caches between processors and the memory requires
a protocol to ensure that stale data does not remain
in caches.  Goodman’s protocol [20] utilizing snoopy
caches is one of the simplest and most popular such
protocols.  Versions of this protocol are hardwired in
many  modern  microprocessors  for  building  small
concurrent systems.  The PowerPC 601 implements
MESI, a slight variant of this protocol [10].



Goodman’s Protocol
In Goodman’s protocol, processors operate on cache
lines  (typically  16-128  bytes  on  today’s
architectures).   Every  main  memory  access  either
reads or writes a cache line; if a processor wants to
write a single word, it has to read the entire line into
the local cache, alter the word, and later write the
line back to  main memory.   Each processor’s  local
cache line can be in one of four states with respect to
a particular memory address a:
• Invalid (I):  There is no valid data cached here
or the cached data corresponds to an address other
than a.
• Shared (S):  Data from address a is cached here
and the cached data corresponds to main memory
contents.
• Exclusive (X):   Data from address  a is  cached
here, the cached data corresponds to main memory
contents, and no other processor can have a cached
copy of this line.
• Dirty (D):  Data from address a is cached here,
the cached data has been modified, and the change
has not been transmitted to main memory yet.
Each local cache’s actions on a read, write, and line
flush are as follows:
• Local  processor  reads  line:   If  the  line  is
shared, exclusive, or dirty, provide the data locally.  If
the  line  is  invalid,  request  the  line  from  main
memory.  At this point either the main memory will
provide  the  data or  another  processor’s  cache will
notice that it has a dirty copy of the line, in which
case the latter processor will provide the data both to
the main memory and to the original processor.  This
is  called  a  snooping  operation  because  when  one
cache requests a main memory line, all  the others
snoop the bus to check whether they have a dirty
copy of that line.
• Local processor writes line:  If the line is dirty,
the write proceeds locally.  If the line is exclusive, the
write proceeds locally and the line state is changed
to dirty.  If the line is shared, the write is done both to
the  local  cache  and  to  main  memory  (thereby
purging this line from all  other caches; see below),
and the line state is changed to exclusive.  If the line
is invalid, the line is first read from main memory1 as
above and then the cache proceeds as in the shared
case.

• Line pushed out of cache (i.e. the cache line is
needed  to  make  room  for  a  different  memory
address):  If the line is dirty, write it back to main
memory.  Change the state to invalid.
In  addition,  each  cache  snoops  all  of  the  other
caches’ transactions with the main memory through
the common bus and performs the following actions:
• Remote processor reads line:  If the line is in
the dirty state here, change the state of the line to
shared and broadcast the data on the bus, telling the
main  memory  to  update  its  copy;  the  remote
processor also gets the broadcasted data.  If the line
is  in  the exclusive state here,  change the state to
shared.
• Remote processor writes line:  If the line is in
the shared, exclusive, or dirty state here, invalidate
it2.

Example
To illustrate the protocol, consider an example with
three processors, each with a one-entry cache.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - - I -

The processors start with empty caches.  The main
memory initially contains the value 37 in the line at
address 4, 14 at address 5, and 64 at address 6 (the
lines  are  typically  16-128  bytes  long  but  are
represented  by  single  bytes  for  the  sake  of  the
example).

1This read is only necessary if the processor modifies part of the line such as a single word.  For this reason, some processor architectures,
including the PowerPC, provide instructions to clear an entire line, while the 68040 provides an instruction to copy an entire line of data.
2Getting the data from the bus and putting it into the local cache might create a stale copy because the remote processor now places its line in
the reserved state and will not send out notifications of further writes.



P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - 6 S 64

After processor 2 reads memory line 6, the data is
placed in its cache in the shared state3.

P0
Addr DataState

Addr Data
4

5

6

6 S 64

37
14
64

P1
Addr DataState

P2
Addr DataState

- I - 6 S 64

Processor 0 then reads memory line 6 with the same
effect.

P0
Addr DataState

Addr Data
4

5

6

6 S 64

37
14
64

P1
Addr DataState

P2
Addr DataState

6 S 64 6 S 64

Processor 1 joins in and reads the same memory line.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
32

P1
Addr DataState

P2
Addr DataState

- I - 6 X 32

Now processor 2 writes 32 to line 6, invalidating the

other two processors’ caches and writing through to
main memory.

P0
Addr DataState

Addr Data
4

5

6

- I -

37
14
32

P1
Addr DataState

P2
Addr DataState

- I - 6 D 16

At this point processor 2’s cache is in the exclusive
state, so it can modify line 6 locally at will  without
writing through to main memory.

P0
Addr DataState

Addr Data
4

5

6

6 S 16

37
14
16

P1
Addr DataState

P2
Addr DataState

- I - 6 S 16

When  processor  0  requests  a  read  of  line  6,
processor  2  provides  the  data  and  updates  main
memory.  Both caches are now in the shared state.

3The state is not reserved because P2 has no way of knowing that the line is not already cached somewhere else.  An optimization of the
protocol provides an additional bus signal to P2 to let it know about this.



P0
Addr DataState

Addr Data
4

5

6

4 S 37

37
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P1
Addr DataState

P2
Addr DataState

- I - 6 S 16

When  processor  0  reads  line  4,  it  displaces  its
existing cache line.  The previous line wasn’t dirty, so
no writeback is necessary.

Other Bus-Based Shared-Memory Architectures
Even  with  caches,  the  bus  in  the  above  scheme
becomes a bottleneck for  more  than three or  four
processors.   Furthermore,  every  cache  has  to  get
involved in  every main  memory transaction,  which
inherently  bounds  the  performance  of  the  system.
The following alternative bus-based schemes try to
overcome these problems.
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Figure 3.  Bus-Grid System
Each processor resides at an intersection of two buses.

Bus-grid  systems  such  as  the  Wisconsin  Multicube
[22] and Aquarius [9] rely on a grid of horizontal and
vertical  buses  for  communication,  with  processors
present at the buses’ intersections.  The Wisconsin
Multicube  has  memories  attached  to  the  vertical
buses,  while  Aquarius  has  a  portion  of  memory
present with each processor.
The Wisconsin Multicube requires each processor on
a column to maintain a table of the dirty lines in all
processors  on  that  column.   Memory  requests  are
broadcast on a row bus.  If one of the processors on
that row notices that the line is dirty in its column, it
will  identify  itself  and  route  the  transaction  to  a
processor in that column; otherwise, the processor at
the  intersection  of  the  given  row  and  the  column
corresponding to the memory containing the line will

process  the  transaction.   The  protocol  includes
several  more  transactions  to  maintain  each line  in
either shared or exclusive state.  The main weakness
of the protocol is that every time a write is made to a
line  in  the  shared  state  to  put  it  in  the  exclusive
state, an invalidation request has to be broadcast to
all processors, which again bounds the performance
of the system.
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Figure 4.  Hierarchical System
This system is a hierarchy of Goodman systems with several
levels of caches between the processors and main memory.

Hierarchical systems such as a hierarchical version of
Goodman’s  cache  coherence  protocol  [48].   The
computer is organized as a tree of buses.  The main
memory is attached to the top-level bus; the other
pairs  of  levels  are  connected  by  caches.   The
processors at the leaves are connected to the lowest-
level buses via local caches.  An important invariant
is that every cache entry must also be present in all
of  its  parents’  higher level  caches.   Thus,  the root
cache of a subtree can immediately determine that a
particular  line  is  not  present  in  its  subtree.   An
undesirable consequence of the invariant is that the
higher-level  caches  must  be  very  large.   The
Goodman protocol  is  followed at  each level  of  the
hierarchy,  with  the  addition  that  when an  existing
entry in a higher-level cache is invalidated, it is also
invalidated in all of the cache’s children.
The Data Diffusion Machine [24] is also a hierarchy of
buses, but with an interesting twist: it has no main
memory—all data resides in caches.  When a cache
fills up, it either erases or moves its data somewhere
else on the machine.  Cache lines have no home—
they are created on the nodes that allocate them and
then  diffuse  through  the  machine.   The  Data
Diffusion  Machine  protocol  is  complicated  by  a
multitude of  transitional  states that manage reads,
writes, locks, and cache spills in progress.



The VMP-MC paper [23] contains an analytical model
and  some  simulation  results  to  determine  by  how
much the traffic in upper-level buses is reduced by
sharing lower-level caches as compared to having an
equivalent total amount of cache memory separated
among the processors on a flat system.  For realistic
assumptions,  the  ratio  is  about  0.5,  meaning  that
only half as many requests propagate to the upper-
level buses as would if the hierarchy were flattened;
thus,  except  in  special  cases,  the  hierarchical
systems considered here fail in significantly reducing
the bandwidth needed on the top-level bus.

Buses Can’t Keep Up
The  above  results  look  discouraging,  so  perhaps
there is something wrong with the concept of a bus
itself.  Buses have long been popular in computers.
They allow many devices to be connected and offer
the advantage of cheap broadcasting, which allows
various snoopy caching techniques.
Nevertheless,  as  technology  advances,  buses  are
becoming impractical.  Due to their large dimensions
and  propagation  time  limitations,  even  high-
performance buses have cycle times on the order of
20 to 30ns, while point-to-point links can be clocked
at 2ns.  Simulations indicate that 2ns point-to-point
rings  of  4  to  16  devices  have  approximately  the
same throughput as buses clocked at 4ns [40].  The
ring’s latency can be slightly worse than a bus, but
the throughput is much better.  Since 4ns buses are
not practical at present4, point-to-point networks are
a better choice.  Moreover, as the number of devices
on a bus is increased, the cycle time increases, while
a network’s cycle time is not affected.
The trend away from buses is clearly visible.  Kendall
Square Research’s KSR-1 [32] is an example of how
rings of point-to-point links can replace buses.  The
KSR-1  is  similar  to  the  Data  Diffusion  Machine
presented  earlier.   It  consists  of  one  or  more  fast
unidirectional rings, each with 32 processors.  Up to
33  rings  can  be  connected  together  by  a  second-
level ring.  Like the Data Diffusion Machine, the KSR-
1  consists  entirely  of  cache—there  is  no  main
memory.  Unfortunately, the KSR-1 has a hierarchical
organization  and  may  suffer  from  bandwidth
problems on the top-level ring as with the VMP-MC.

Network-Based Shared-Memory 
Architectures
A  fundamentally  different  approach  is  to  allow  an
arbitrary  communication  network  between  the
processors and memory and to rely on a protocol to

notify  processors  that  their  local  caches’  data  is
stale.   Most  of  these  protocols  [42]  rely  on  the
concept of a directory in main memory, which keeps
track which processors have copies of the data so a
writer  can  invalidate  all  outstanding  copies  of  a
cache  line.   These  protocols  can  be  implemented
fully or partially in hardware, or they can be software-
based.   The  merits  of  compiler-scheduled software
cache  coherence  are  studied  in  [38]  and  [1],
concluding that this form of coherence performs well
for  structured  problems  but  is  highly  sensitive  to
minor  variations  in  less  structured  situations.
Hardware,  or,  at  least,  hardware  with  software  to
handle  difficult  cases  appears  to  be  the  best
approach here.
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Figure 5.  Bitmap Directory
The main memory directory keeps track of which processors
have copies of data.

The original directory approach [11] is to maintain a
bitmap directory (Figure 5) with each main memory
line.  One directory bit in each line corresponds to
each cache in the system; the bit is set whenever the
corresponding cache contains a copy of the data line.
An additional D bit is set if the data is dirty in a cache
(in which case exactly one other bit in the bitmap is
set).  The processor caches run a protocol similar to
Goodman’s except that when a cache wishes to write
to  a  line  that  isn’t  already  dirty,  it  looks  up  the
processor numbers of other processors caching that
line  in  the  directory  and  then  sends  invalidate
messages to 

4Very high-speed buses exist in restricted applications such as the 500MHz RAMBus, which has a master at one end and slaves along the rest
of the bus; different clocks are used for sending and receiving, and the entire bus has to be physically small.



them5.  The size of the directory bitmap is equal to
the number of  processing nodes in the system, so
this scheme is only suitable for small systems.
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Figure 6.  Limited Directory
The directory is smaller but can only keep track of a subset (at
most two in this example) of shared copies of a data line.

To  reduce  the  size  of  the  directory,  the  directory
format can be changed to an array of k pointers [3].
The pointers  refer  to  at  most  k caches  which  can
have shared copies of the line.  If all k pointers are in
use and another cache would like to get a copy of the
data, one of two things happens depending on the
implementation:  one of the original  k caches gets
invalidated, or the directory line enters a state where
the set of caches with copies of the data is unknown
and  a  broadcast  will  be  required  to  invalidate  all
caches the next time the line’s data is modified.  This
scheme  either  causes  thrashing  in  some  cases  or
requires  occasional  broadcasts;  however,  statistics
indicate  that  these  situations  are  rare  in  most
programs even for small values of  k such as 2 [47].
Another promising approach is to escape to software
when  the  number  of  shared  copies  exceeds  the
capacity of the directory [2].
An  even better  approach is  the  Scalable  Coherent
Interface  (SCI)  scheme [28],  which has  a  directory
with one pointer in the main memory.  When multiple
caches have copies of the data, the pointer points to
the  first  cache  of  a  doubly-linked  list  threaded
through the  caches.   Specifically,  when a cache  A
requests data from the main memory and the data is
already  cached  in  cache  B,  the  main  memory
immediately  responds  with  a  message telling  A to
ask B instead (and changes its head pointer to point
to cache A).  Cache A then asks cache B to get the
data and notifies B that A is now the head.  If cache
A were doing a write,  it  would ask  B to invalidate

itself  and send back a  pointer  to  B’s  successor,  if
any;  A would  then proceed to  purge  all  the  other
successors  from  the  linked  list  in  the  same  way.
When a cache line is replaced, the cache can remove
itself  from  the  doubly-linked  list  by  linking  its
neighbors  together.   This  scheme  requires  four
network transactions for a shared read and a number
of  transactions  and  latency  proportional  to  the
number of copies being invalidated for a write.  This
scheme  is  an  IEEE  standard  for  very  fast
communication services for a network of nodes.
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Figure 7.  Linked Directory
The caches containing copies of  data in memory are linked
into a doubly-linked list, represented here by gray lines.  The
first cache in the list has the authority to invalidate the others
if it wants to acquire exclusive ownership of a line or write to
it.

A variant of this scheme is the Stanford Distributed-
Directory  Protocol  (SDD)  [43],   This  protocol  uses
singly-linked lists of caches instead of doubly-linked
ones; when a cache line is replaced, the cache must
invalidate all caches downstream from it first.  SDD
includes an optimization in the common case where
cache A reads a value that is already in cache B—the
main  memory  forwards  A’s  request  directly  to  B
rather than replying back to A and having it contact
B.  This reduces the number of messages from four
to three but might deadlock if the network is full, so
the protocol  uses the four-message scheme in that
case.   Writing and obtaining exclusive access to  a
cache line is done as in SCI.

5The actual protocol is a little more complicated to handle the case of two or more processors wanting to modify the same line at almost the
same time.



Topology
So far the directory protocols were examined without
regard to network topology.  The two main kinds of
network topologies are hierarchies or  variants  of  a
multicube.
Hierarchies  allow recursive  protocols  and  can  map
well  to  hierarchies  of  physical  packaging—chips,
boards, and cabinets—but the top levels can become
bottlenecks.   Both  kinds  of  topologies  can  take
advantage of locality.  As observed before and in [5],
trees of rings suffer from bandwidth problems at the
root.
Meshes  and  multicubes  tend  to  have  better
performance characteristics.  Their bandwidth scales
into  large  sizes  much  better,  and  machines  with
thousands  of  processors  have  been  built.   Current
network speeds are fast enough that the exact mesh
or multicube topology doesn’t matter much, at least
until  one  starts  to  build  machines  with  tens  of
thousands of processors.  On the J-Machine [14][15],
one can ignore topological locality altogether without
burdening  the  network  until  the  machine  size
exceeds a thousand processors [26], and this is true
for multicubes in general [29].

Other topologies are also possible, such as a fat tree6
in the Connection Machine 5 or the hybrid topology
in Dash [34], which is a mesh of nodes, each of which
has  several  processors  on  a  local  snooping  bus.
Hybrid topologies can match physical packaging I/O
constraints well.
Does topology matter?  For the foreseeable future, at
least some programmers will try to take advantage of
hardware topologies when mapping their applications
to  get  the  best  performance.   Some  of  the
architectures,  especially  the  hierarchical  bus/ring-
based  ones,  don’t  work  well  unless  the  mapping
limits traffic across the root; others, such as meshes
and fat trees, provide plenty of bandwidth for now.
Explicit hardware mapping can run into problems if
there are faults present in the machine, and it is non-
portable.   In  the  end,  for  most  applications  it’s
probably best to request a logical geometry and let
the firmware pick an appropriate mapping.  In return,
the machine topology should be able to support the
desirable mappings efficiently.

Strong and Weak Consistency
There are three important shared memory efficiency
enhancements that require some knowledge of the
semantics of the application.  The first is the use of

weak consistency [16] for most data accesses.
A parallel system is strongly consistent if all memory
reads  and  writes  can  be  placed  in  a  total
chronological order.  Strong consistency is expensive
to  achieve  in  practice  because  it  requires  that  if
processor  B reads a variable  x written by processor
A,  B then performs a  write  to  y which  is  read by
processor  C, and finally  C reads  x, then C must get
the new value of x produced by A.  Thus, A’s write of
x must reach  C before any communication from  A
can reach C through B.  In practice, this requires that
each processor wait until a write is completed before
proceeding,  introducing  a  significant  performance
bottleneck.
A  weakly  consistent  system requires  only  that  the
memory  operations  be  serializable  locally—a
processor’s  memory  operations  appear
chronologically consistent from its frame of reference
but not necessarily from the other processors’ view.
Furthermore,  a  certain  set  of  memory  locations  or
operations7 can  be  distinguished  as  being
synchronizing—synchronizing  operations  must  be
strongly  ordered.   Finally,  synchronizing  and  non-
synchronizing  memory  accesses  must  not  be
reordered or overlapped.   Synchronizing operations
are used for items such as locks and queues, while
non-synchronizing  operations  are  used  for  general
data.  A processor can continue running immediately
after a non-synchronizing write is issued.
The PowerPC architecture supports weak consistency
and provides the SYNC and EIEIO (!) instructions [10]
as memory barriers.

Locks
The  second  architectural  enhancement  aims  to
improve  performance  when  dealing  with  heavily
contested locks.  When n processors are all spinning,
trying to acquire the same lock using test-and-test-
and-set,  O(n2) network  operations  are  needed  in
unoptimized cache coherence schemes before each
processor can get the lock once because the lock is
written  n times, each time invalidating  O(n) cached
copies on the other processors.  

6A fat tree is a tree in which there are many redundant links at the higher levels.  These links provide greater bandwidth and fault tolerance.
7Two variants of read and write instructions can be provided.  Some architectures provide a barrier instruction instead that waits until all
pending memory operations complete before proceeding.



The solution is to extend the protocol to queue the
processors  waiting  for  a  contested  lock;  when  a
processor releases the lock, it passes it to the next
one  in  the  queue,  requiring  only  O(n) network
operations.
This  approach  is  presented  in  [21],  where  three
primitives  are  introduced:  test-and-set,  unset,  and
queue-on-syncbit.  The last one notifies the hardware
that this processor would like to be appended to a
queue waiting for a lock, if there is one.  The same
operations can be used to efficiently implement other
synchronization  primitives  such  as  fetch-and-add,
work queues, and barriers.

Multitasking
Technology  trends  indicate  that  the  speeds  of
processors  will  continue  to  rise  much  faster  than
memory  or  communication  latency  (but  not
bandwidth)  for  the  foreseeable  future.   Whereas
cache miss penalties were equivalent to one or two
instructions a few years ago, a future processor will
be able to execute tens or hundreds of instructions in
the time it takes to fetch a word from main memory
or another processor.  Thus, it’s important to avoid
stalls on cache misses.
Memory latencies can be hidden (for the time being)
on  sequential  processors  by  executing  other
instructions  until  the  result  is  needed.   The  same
thing can be done on parallel computers as long as
excess  parallelism  is  available—a  processor  can
switch  to  another  task  while  the  original  one  is
waiting  for  a  remote  reply.   Thus,  processors  will
evolve to be able to run more than one instruction
stream at a time; this trend will be examined further
in the following sections.

Why Does This Matter?
The details of the implementation of shared memory
cannot be completely hidden from the programmer.
The weak consistency optimization must be exposed,
as it  affects the semantics of the program, even if
one is programming in a high-level language like C.
Optimizing locks affects performance only, but it is
also exposed through the communication abstraction
to let the programmer notify the hardware about lock
operations;  furthermore,  practical  hardware  may
have limitations such as only supporting one lock per
cache  line.   Multithreading  will  be  a  revolutionary
change  in  the  design  of  processors,  and  it  is
inevitable.

3.  Message-Passing 
Architectures
The  second  paradigm  for  communication  within  a
parallel application is passing messages.  A message-
passing system is conceptually organized as in Figure
8: each processor has a local memory and access to
a  network  which  routes  messages  between  the
processors.
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Figure 8.  Message-Passing Architecture
The  processors  communicate  with  other  processors  via  a
network.  Each processor’s memory and cache are local, so
there are no coherency problems.

Although  message-passing  architectures  have
existed for a while, they typically provided only high-
overhead  communication  facilities—sending  a
message  involved  an  operating  system call  and  a
protection  domain  switch,  which  by  themselves
consumed  about  a  millisecond.   This  may  be
acceptable  if  the  communication  medium  is  an
Ethernet,  but  not  in  a  modern  parallel  computer.
Decreasing  communication  overheads  can  improve
program  running  times  by  more  than  an  order  of
magnitude  for  a  variety  of  applications  [5].   The
ability  to  efficiently pass  messages  between
processors  and  have  the  destination  processor
perform some activity upon receipt of a message can
be  used  to  implement  a  great  variety  of
programming language constructs such as procedure
calls and returns, object migration, and barriers.
Achieving  low  communication  overhead  requires
streamlining  of  the  way  messages  are  sent  and
received.  The precise mechanism used to send and
receive  messages  can  vary,  but  there  are  some
things the hardware should provide: efficient 



sending  of  messages  from user  code,  queueing  of
incoming  messages,  and  atomicity.   Two  projects
provide  good  illustrations  of  possible
implementations of efficient message passing: Active
Messages and the J-Machine.

Active Messages
Active  Messages  [17]  is  a  simple  communication
abstraction  for  parallel  message-passing
architectures,  including  existing  systems;  it  is
currently implemented on the CM-5, nCUBE/2 and the
J-Machine.  A compiler can use Active Messages as a
basic  mechanism  to  implement  remote  procedure
calls, block sends, and other communications.  The
emphasis is on reducing the overhead of sending and
receiving  messages—conventional  libraries  use
hundreds or thousands of microseconds to compose
and dispatch messages, while active messages can
be composed and dispatched in a few microseconds
on the same hardware.
An active message contains a program counter value
and  zero  or  more  words  of  data.   When  such  a
message is received by the destination processor, it
begins  executing  a  message  handler  starting  from
the supplied PC value.  That handler then interprets
the rest of the message and decides what action, if
any,  to  take.   The source  processor  is  required  to
know the address of the handler on the destination
processor; this generally does not present a problem
if the handlers are fixed in each processor’s address
space.
An active message handler must be short and non-
blocking  to  avoid  network  backups  and deadlocks.
Thus,  active  message  handlers  themselves  are
unsuitable  for  performing  nontrivial  computations;
they  cannot,  for  example,  send  messages  at  the
same or lower priority level as the received message.
Instead, an active message handler can be used to
receive arguments for a procedure call and schedule
the  procedure  invocation  itself  as  a  background
process.    A program executes a remote function call
by sending the address of the procedure, arguments,
and a return pointer in a message to a remote node;
the message’s PC points to a handler that queues the
procedure invocation in a local task queue, which is
later  retrieved by a  background dispatcher.   When
the  procedure  finishes,  it  sends  the  result  back  in
another message.
Active  Messages  can  be  implemented  reasonably
well on existing hardware, but a few simple hardware
optimizations can make this model more efficient.  It
helps  to  be  able  to  compose  and  send  messages
directly from registers without having to store them
in  memory  and  use  DMA.   The  entire  received

message should be directly accessible so it does not
have to be read one word at a time or copied into
memory.  The details of the routing hardware should
be hidden from the program so it can just designate
the  destination  address  and  message  contents  in
order to send a message.  Finally, message sending
and receiving should be done at the user level  for
most messages to avoid costly kernel calls.

J-Machine
The  J-Machine  [14]  has  SEND instructions  to  inject
message words directly into the network, making it
very easy to inject messages.  On the receiving end,
the J-Machine queues messages in a circular buffer
on each node (this is an extremely fast operation due
to the  memory  design).   The J-Machine  processors
automatically  handle  incoming  messages  one  at  a
time,  dispatching  on  the  PC  values  in  their  first
words.   If  a  J-Machine  procedure  calls  another
procedure, it executes the SUSPEND instruction to let
other messages run; the compiler ensures that the
procedure copied all  of its needed arguments from
the message into an activation frame by this point.
Figures 9 and 10 show the J-Machine procedure call
and return messages.
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Figure 9.  J-Machine Call Message
This message is used to initiate a remote procedure call.  The
Call  handler PC is  the address  of  a  four-instruction routine
that translates the function virtual ID and then jumps to the
function code.
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Figure 10.  J-Machine Reply Message
This message returns the result of a remote procedure call.

Unlike  the  Active  Messages  proposal,  a  J-Machine
message  handler  can  perform  arbitrary  tasks,
including sending other messages.  Procedure calls
are executed directly rather than being stored in a
task  queue.   Unfortunately,  this  means  that  the
hardware message queue frequently overflows if the
procedure calls are time-consuming; messages in the
hardware  queue  then  have  to  be  copied  to  other
portions  of  memory.   The  Active  Messages
architecture, on the other hand, avoids the problem
of message queue overflows, but its the task queue
is  subject  to  overflows,  and,  furthermore,  every
procedure  invocation  must  be  copied  rather  than
only non-leaf procedures as on the J-Machine.  Quick
requests  do  get  handled  faster  under  Active
Messages, but the same thing could be done on the J-
Machine by using more priority levels8.
The J-Machine also provides for hardware support of
a  user-defined  translation  between  virtual  and
physical addresses.  Even though a processor cannot
directly reference another processor’s memory, it can
contain pointers (virtual IDs) to objects there and can
request  actions  by  sending  messages  to  the
processor  containing  an  object.   Each  processor
manages its own translation between virtual IDs and
physical  memory  addresses;  it  can,  for  example,
relocate objects without having to notify any other
processors.   The  translation  is  flexible  enough  to
allow an object to easily migrate from one node to
another or even to a disk.

Other Communication 
Mechanisms
In  addition  to  efficient  message  sending  and
receiving,  there  are  other  useful  message-passing
communications  mechanisms.   One  useful  feature
which  neither  Active  Messages  nor  the  J-Machine
provides is atomicity of message sends.  This permits
a processor to cancel a message send if the entire
message cannot be accepted by the network and is
very  useful  in  avoiding  deadlocks  in  protocols;  for

example, the distributed cache coherence scheme in
[43] optimizes out many network operations.  Due to
dependency  cycles  (Figure  11),  this  would  not  be
possible if processors were committed to sending the
rest of the message once they initiated a message
send9.
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Figure 11.  Message Deadlock
If  one or more processors try to send messages to each other
in a cycle and the network buffers fill up while the processors
all wait for the network, the machine will deadlock.  Deadlocks
can be avoided by canceling message sends, moving data from
the network buffers to some other place, or by using multiple
priority levels or virtual channels so cycles don’t exist.

In  many  applications  the  availability  of  several
priority levels allows simple calls/returns without the
need  to  allocate  large  buffers  or  worrying  about
deadlocks.   Moreover,  separate  priority  levels  are
useful for the supervisor and for debugging purposes.
Another set of mechanisms concerns protection.  If a
message-passing computer is time- or space-shared,
the processes should not interfere with one another.
This includes network contention—a process should
not be able to saturate another’s network.  This goal
can be accomplished by having the processes run in
disjoint parts of the machine with hardware message
destination address checking or by having them use
different virtual network channels10.  Virtual network
channels  can  guarantee  minimum  bandwidths  to
processes without wasting wire bandwidth if not all
channels are busy [8].  Another element of protection
is  the  ability  to  drain  a  portion  of  a  network  of
messages  without  dispatching  them for  debugging
purposes  or  to  time-share  processes.   The  CM-5
accomplishes this with an “all-fall-down” mode where
messages currently in the network are dropped into
nearby  processors;  this  has  the  advantage  of
requiring only fixed-size buffers on the processors.

8This isn’t done now due to quirks in the instruction set.
9The J-Machine handles this problem by transferring messages into an overflow buffer if a message queue overflows; if the overflow buffer also
overflows, a higher-priority network level must be used and things get quite complicated.
10A virtual network channel appears to be a logically separate network channel but actually shares wires with other network channels.



iWarp [8] provides an additional facility for systolic
communication.   A  pair  of  nodes  can  establish  a
channel  between them for  systolic  communication,
thereby reserving a virtual network link between the
two  nodes.   The  two  nodes  are  then  able  to
communicate  individual  words  quickly,  without
routing  information.   This  facility  permits  non-
blocking emulation of various network topologies and
may  be  useful  for  multimedia  applications  which
require a guaranteed bandwidth.

Multitasking
Message-passing mechanisms are closely related to
multitasking.   It  would  be  wasteful  (and  cause
deadlocks) to make a processor wait for a result from
a remote function call before proceeding; a superior
solution is to switch to another task while the original
one  is  waiting  for  a  remote  reply.   The  speed  of
context  switches  greatly  affects  the  programming
style  of  the  machine—slow  context  switches
encourage  the  use  of  coarse-grain  parallelism and
busy-waiting.
On conventional  processors,  even Active  Messages
on  the  CM-5,  context  switches  require  a  sizable
amount  of  time  to  switch  the  process  state.   J-
Machine context switches take about 30 instructions,
which is still large.  Machines exist such as HEP [30]
and Monsoon [39] that have zero context switching
times (as long as the set of active contexts doesn’t
over-  or  underflow),  but  they  suffer  from  poor
sequential performance.  The 88110-based dataflow
architecture *T [37] has faster context switching at
the expense of reducing the register set available to
sequential  tasks  and  imposing  constraints  on  the
compiler.  Ideally, a machine should have near-zero
context  switching  time  while  also  having  good
sequential  performance;  the  M-Machine  tries  to
achieve that goal.
Unfortunately,  fine-grain  parallelism  can  negate
some  of  the  benefits  of  local  caches  because  the
working set becomes larger.  TAM [13] attempts to
group executions of related tasks together, but this
area is still relatively unexplored.

4.  Distributed System 
Communication
Unlike  shared  memory  and  message  passing,
communication in distributed systems is much less
homogeneous.  There are a number of applications
and systems for  communication,  with no particular
abstraction being dominant except at the lowest OSI

levels [50] such as unreliable packet delivery at the
network  layer  (see  Figure  12).   Some  systems
provide  only  file  system  services,  others  allow
remote  procedure  calls,  while  still  others  provide
higher-level application services.  Continuing with the
direction  of  the  previous  sections,  this  section  will
concentrate on services that would be useful within
an  application  running  on  several  processors  or
computers.   Such  services  tend  to  be  function
libraries and higher-level  operating system services
rather than mere distributed filing systems.
Several  approaches  in  research  systems  are
described below.  There are many others; some, such
as using AppleEvents or OCE will be familiar to many
readers.

Layer Services provided
Application User services
Presentation Exchange of structured data
Session Establish and maintain session 

bindings between 
communicating entities

Transport Transport data between session 
entities

Network Route packets over network
Datalink Send packets over a single 

physical network segment
Physical Exchange bits

Figure 12.  OSI Reference Model
A  network  organization  conforming  to  the  OSI  Reference
Model is composed of distinct abstractions built on top of one
another, each one implementing new functionality on the one
below it.  OSI systems provide a wide set of functionality at
the expense of high overhead needed to interpret higher-level
protocols in terms of lower-level ones.

Systems
PVM  [41][19]  is  an  example  of  a  communication
architecture  for  a  distributed  system  of
heterogeneous  computers.   PVM  is  a  coarse-grain
protocol  for  communicating  among  programs  that
implements  data  translation,  shared  memory
emulation, process and event operations, broadcasts,
barriers,  and  locks.   Machines  with  different
processors  or  architectures  can  transparently
communicate  with  each  other;  data  formats  are
automatically  translated  and  the  appropriate
program binaries selected.  A PVM parallel programs
can run simultaneously on a vector supercomputer,
highly  parallel  machine,  and  a  network  of
workstations,  taking  advantage  of  each
architecture’s best features.  PVM is implemented as
a library and supports a variety of source languages.
One 



nice  touch  in  PVM’s  is  an  X-Windows  graphical
interface, HeNCE, for viewing and debugging parallel
programs [18]
PVM  assumes  only  that  unreliable,  unsequenced,
point-to-point  communication  facilities  exist  among
the participating computers; a test implementation of
PVM  uses  the  UDP  protocol.   Shared  memory,
barriers, and broadcasts are emulated with point-to-
point  communications,  making them inefficient—an
8-byte  message  takes  15ms,  and  a  64-process
barrier  takes  0.6  seconds!   Clearly,  an  application
must be divided into large chunks in order not to be
swamped by communication overhead.  PVM is most
useful  for  interfacing  large  modules  to  each  other
such  as  orchestrating  communication  between  a
vector  supercomputer,  a  parallel  computer,  and  a
graphics workstation for visualizing the data.  It can
also  be  used  to  take  advantage  of  idle  time  on
networks  of  workstations  as  long  as  the  problem
does not require low-overhead communication.
The Nectar system [6] has the same goal as PVM—
computation  on  a  network  of  heterogeneous
computers—but  it  uses  lower-level  facilities  to
overcome  PVM’s  speed  problems  caused  by
traversing  the  OSI  hierarchy.   In  particular,  Nectar
uses  a  custom  high-speed  fiber-optic  network  for
high-throughput,  low-latency communication among
the nodes.   In  the spirit  of  iWarp,  both circuit  and
packet switching are supported, and communication
paths  can  be  programmed;  in  addition,  a
communication path can be split  in the network to
implement multicasting.   Nectar uses plug-in cards
that  implement  memory-mapped,  user-level  I/O  to
eliminate  the  overhead  of  kernel  calls  for
communication  while  retaining  compatibility  with
existing  computers.   RISC  processors  called  CABs
handle communication activities for the host nodes.
Emerald  [27][31]  is  a  complete  language  and
environment  for  programming  distributed  systems.
Unlike many other parallel and distributed languages,
Emerald provides a single model for sequential and
parallel  computing:   programs work with the same
kinds of  objects  both locally  and globally.   On the
other  hand,  Emerald  is  running  on  distributed
clusters  of  workstations  where  local  computation
performance  is  orders  of  magnitude  greater  than
network latency,  so  there is  considerable incentive
for the system to classify object usages as local or
global in order to permit optimizations; the system
can do this automatically in some cases.  In order to
improve  efficiency,  Emerald  can  move  parameter
objects to the site of a remote function call  at the
time the  call  is  made.   Emerald  communication  is
coarse-grained  and  requires  overhead  to  translate
object addresses between the nodes’  local  address
spaces.  This permits fast sequential computation at

the expense of extra computation on message sends.
Amber [12] is an implementation, based on Emerald,
of  C++ on  a  distributed  network  of  homogeneous
workstations,  each  of  which  contains  several
processors  communicating  by  shared  memory.
Unlike  Emerald,  Amber  maintains  a  global  address
space for all objects in the system and simply maps
them  in  and  out  of  local  memories  using  virtual
memory techniques; this helps reduce Amber’s grain
size.   Unless  specified  otherwise,  when  a  thread
references a remote object, the thread will travel to
the object  rather  than the  object  migrating  to  the
thread’s current location.
Linda  [4]  is  a  communications  kernel  that  can  be
interfaced to  many languages.   It  defines a  global
tuple database with three basic operations:  adding,
removing,  and  reading  tuples.   Tuples  can  be
selected  by  matching  on  arbitrary  elements.
Implementations  of  Linda  exist  for  various  shared-
memory and message-passing systems, although the
message-passing  implementations  in  [4]  did  not
appear to be particularly efficient or scalable—they
either  replicated  the  tuple  space  over  every
processor  or  broadcast  match  requests  to  every
processor.

Multiple Representations
When concurrent programs are run on a network of
heterogeneous  machines,  problems  of  differing
representations  of  data  and  code  often  arise.
Problems  appears  both  at  the  low  level  of  byte
ordering and at higher levels of data structures and
content.   The  traditional  approach  is  to  define  a
canonical  representation  for  communicated  data
such  as  XDR  [36]  and  to  produce  different  code
images  for  different  machines  as  is  done  in  PVM.
Unfortunately, if the canonical data representation is
different  from  either  the  source  or  destination
representation, two conversions will result instead of
one or even none.   One solution is  to  negotiate a
common representation that is efficient for at least
one  of  the  parties  to  the  communication.   More
involved  protocols  can  also  be  used  [45],  with
extraordinary gains in cases where converting data
to  and  from  the  canonical  form  is  slow.
Unfortunately, this approach does not work as well if
the communication is deferred over time.
Programs designed for  a  parallel  computer  can  be
run  on  heterogeneous  machines  by  compiling
modules  for  the  different  machines.   However,
migration becomes difficult, as the state of a running 



process  is  difficult  to  capture  in  a  machine-
independent  way.   Incredibly,  [44]  provides  an
approach based on incremental recompilation11, but it
restricts  compiler  optimizations  to  require  the
machine state to agree with the source program on
procedure calls.

Robustness
Atomicity,  reliability,  and  security  play  a  very
important  role  in communications.   Some systems,
especially long-lived or distributed ones, can recover
from communication  errors  or  even  node  crashes.
Argus [35] is the classic robust system, with support
for  nested  atomic  transactions  and  fault  recovery.
Although  robustness  is  a  system  and  language-
design issue,  decisions  about  reliability have to  be
visible  at  the  communication  abstraction  level  as
well;  they should not be added as an afterthought
[7].

5.  Discussion

Is there an Ideal Substrate?
One goal of research in communication abstractions
is  to  find  an  abstraction  that  is  usable  on  a  wide
range of  systems for  a wide range of  applications.
An  example  of  such  an  abstraction  is  the  use  of
virtual memory on sequential machines for managing
the  memory  hierarchy—the  vast  majority  of
programs can disregard virtual  memory details and
run just fine12.
Cache-coherent shared memory is one candidate for
being a nearly universally applicable abstraction for
parallel  systems  of  today’s  technology—it  is  fast,
scalable (if directory schemes are used), and nearly
all paradigms can be implemented efficiently with it.
Using shared memory does involve hardware costs,
but they are small compared to the costs of writing
software.
Active Messages is another candidate for a universal
abstraction—it  too  is  fast  and  scalable.   Current
implementations  still  have  too  much  overhead  to
allow  efficient  emulation  of  the  shared  memory
paradigm using messages, but this will likely change.
Message-passing  can  be  implemented  on  top  of
shared  memory,  and  shared  memory  can  be

implemented on top of message passing, a concept
recognized in Mach [49].  In the end, cache-coherent
shared memory and Active Messages will merge into
one paradigm that supports memory requests as a
special  kind  of  messages,  handled  mostly  in
hardware.   Systems  may  differ  in  the  amount  of
hardware  assistance  they  provide  for  memory
request messages, but this appears to be the most
flexible  combination  for  compact  systems.   The
common cases can be handled less expensively in
hardware, while many of the esoteric cases can be
done by software.  Nevertheless,  there are several
issues  which  have  to  be  addressed  before  this
happens, as outlined below.

Local Needs
Future  processor  will  have  to  include  support  for
efficient  task  switching  to  mask  the  hundreds  of
instruction  opportunities  that  will  be  wasted  by  a
memory  fetch  caused  by  a  cache  miss;  the  same
mechanism will help keep the processor busy while it
is  waiting  for  network  memory  references  and
remote  procedure  call  results.   Low-latency
communications also require fast response time from
the target of  a message.   Current  RISC processors
have remarkably poor interrupt response times due
to the need to switch large register files and process
states.  At the same time, processor designers are
running  out  of  ideas  to  take  advantage  of  the
parallelism inherent in a stream of instructions; four
or  five  instructions  at  a  time  seems  to  be  the
maximum  [46].   Both  of  these  problems  can  be
neatly solved by building a multithreading processor
or a chip with several independent processing units
sharing memory; some threads perform computation,
while others serve remote requests.   iWarp and *T
are following this approach.

Protection
The mechanism of address space mapping and inter-
process protection will also change.  A large reason
for the high overhead of process switches on current
computers is the need to remap address spaces to
enforce protection.  This is impractical on processors
that perform a context switch every nanosecond, so
a different mechanism has to be used.  Fortunately,
such a mechanism exists and has been known for a
long time—capability-based protection.

11Can you imagine running a program on a Mac, going into the debugger, saving its state, and then resuming it under Microsoft Windows on an
IBM clone, where in both cases the program runs at full speed in native mode?
12However, the situation is now changing with greater use of interactive and real-time applications on workstations; unpredictable delays can
be quite bothersome when running multimedia applications.



In  a  simple  form  of  capability-based  protection,
memory  is  divided  into  variable-size  segments;  an
address  consists  of  a  segment  descriptor  and  an
offset (this need not bring up the 80x86 nightmares
—segments can be arbitrarily long or short and are
completely  orthogonal  to  the  paging  mechanism).
Offsets  are  integers,  but  segment  descriptors  are
words  marked  with  a  special  bit  that  can  only  be
changed by the kernel.   A user program can read,
write,  copy,  or  compare  for  equality  segment
descriptors  in  registers  and memory  at  will,  but  it
cannot forge or change them.  Thus, a user program
can only access memory for  which it  has segment
descriptors,  either  generated  by  operating  system
calls or because it found one somewhere in memory
it  can  reference.   Programs  can  share  segments
simply by passing segment descriptors to each other.
Under capability-based protection, user programs are
completely unaware of where in the address space
they reside, and there is no need to reconfigure the
MMU between processes.

Other Issues
Some  applications  such  as  real-time  video
manipulation can benefit from bandwidth guarantees
provided by circuit switching.  Bandwidth is hard to
guarantee using plain message passing, so for these
applications  the  network  channels  should  be
software-configurable at a lower level as in iWarp and
Nectar.  Bandwidth guarantees or priority levels are
also useful for security reasons to prevent a runaway
user  program  from  starving  out  the  operating
system.
Other applications such as timesharing and garbage
collection require the ability to inspect the messages
currently in the network and optionally remove them
from the network.  This can be done as in the CM-5
or  by  providing  a  mode  where  messages  are  not
executed by receiving nodes.
Network hardware reliability is a thorny issue.  The
current practice is to use software to provide robust
services on distributed networks and to ignore the
problem  (or  merely  detect  faults  and  halt  the
machine  if  one  occurs)  on  parallel  computers.   A
software  solution  is  undesirable  here  because  it
requires  the  originating  node  to  keep  track  of
messages it  sends out until  it  knows that they are
received, thus involving extra copying and overhead.
The  efficiency  and  simplicity  goals  of  Active
Messages  would  be  violated  unless  the
communications  substrate  can  support  reliable
message routing and delivery.  Of course, the difficult
problem of what to do when a node crashes remains.

Distributed Needs
The needs of distributed networks overlap those of
parallel computers, but they also extend over a much
broader range.  Some localized distributed networks
can act  like  parallel  computers,  but  others  require
facilities  such  as  wide-area  routing  and  naming,
extensive security, and tolerance of high latency and
low  bandwidth.   Public  network  security
considerations  alone  preclude  efficient  user-level
network  access  of  shared  memory  and  Active
Messages; both of these systems rely on hardware
source  checking  of  destination  addresses  or
capability-based protection, which doesn’t work well
on  a  public  network,  where  anyone  can  snoop  on
wires,  intercept  messages,  modify  and  misroute
them,  and  flood  networks  with  spurious  data.
Encryption schemes exist to reliably deal with all of
these problems, but they are time-consuming (and,
unfortunately, haven’t been implemented widely).
Of  course,  shared-memory  and  Active  Message
implementations  can  be  supported  on  distributed
networks to provide compatibility but don’t work as
well  there  because  of  the  above  problems  and
unavoidable  high  latency—there  is  no  way  to  get
around speed of light limitations, and we will have to
deal with compatibility with existing networks for a
long time.  Thus, applications themselves have to be
tuned  to  work  around  the  effects  of  latency.   The
future will bring networks of hundreds of millions of
computers  interconnected  via  networks  with  an
extremely large range of bandwidths.  Protocols such
as  ISDN and  ATM for  handling  this  are  starting  to
emerge, but this field is still in its infancy.

6.  Conclusion
Parallel  processing  will  move  into  the  mainstream
much more rapidly when applications can be easily
ported and interfaced between machines of various
architectures.   The  lack  of  standardization  of
communication  architectures  is  a  major  stumbling
block  to  this  goal,  but  a  universal  communication
paradigm—low-overhead  message  passing  with
support  for  shared memory—for parallel  computers
appears within reach.  The situation is worse in the
distributed  arena,  where  the  requirements  span
many orders of magnitude of bandwidth and latency
and security needs.
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